동일 변위센서를 사용한 레일표면 음향형도의 측정방법

정우태∗2, 정승호2, 고효인3
1,2,3한국철도기술연구원 교통환경연구팀

Measuring Technique For Acoustic Roughness of Rail Surface With Homogeneous Displacement Sensors

Woota Jeong1*, Seungho Jang2, Hyo-In Kho3
1,2,3Transportation Environmental Research Team, Korea Railroad Research Institute

요 약 열차 운행시에 발생하는 전동소음은 열차 차축과 레일 표면의 불균일성에 의하여 가진진 진동에 의해 발생한다. 따라서 열차 전동소음을 진단, 예측 및 분석을 위해서는 차축과 레일표면의 음향형도(acoustic roughness)의 정확한 측정과 분석이 필요하다. 그러나 현재의 레일표면의 조도측정을 위한 장치와 방법은 작업자의 수작업에 의존한 트롤리 장치를 사용함으로써, 불필요한 측정속도와 흔들림과 같은 불안정한 인터페이스를 이기하여 측정값의 오차와 왜곡을 증대시키는 단점은 지니다. 본 논문은 철도제도의 레일상에서 자율 적속 주행하면서 레일표면의 음향형도를 측정하는 자동화 측정장치 및 플랫폼 개발함으로써, 측정정밀도를 향상시키고 측정값의 불균일성을 감소시켰다. 또한 측정값의 신뢰도와 정확도 향상을 위해 동일한 복수의 변위센서 적용법을 제안하였으며 표준레일구간의 현장측정을 통해 동일 변위센서로부터 응답된 데이터의 정확성을 검증하였다.

Abstract Rolling noises during train operation are caused by vibration excited from irregularities of surface roughness between wheel and rail. Therefore, a proper measurement and analysis techniques of acoustic roughness between wheel and rail surface are required for transmission, prediction, and analysis of the train rolling noise. However, since current measuring devices and methods use trolley-based manual handling devices, the measurements induce unstable measuring speed and vibrational interface that increases errors and disturbances. In this paper, a new automatic rail surface exploring platform with a speed controller has been developed for improving measurement accuracy and reducing inconsistency of measurements. In addition, we propose a data integration method of the rail surface roughness with multiple homogeneous displacement sensors and verified the accuracy of the integrated data through standard test-bed railway track investigation.

Keywords : Acoustic roughness, Data Integration, Railway track, Rolling noise, Roughness measurement, Surface roughness

1. 서론

열차 운행시에 발생하는 소음은 주로 차축과 레일 표면의 불균일성에 의하여 가진진 진동에 의한 전동소음(rolling noise)이 주요한 원인을 차지한다. 특히 차축과 레일 표면의 불균일성 중에서 소음과 관련된 과장변위의 값은 음향형도(acoustic roughness)라고 하며 철도 선로 변의 소음에측, 측정과 분석을 위해서는 차축과 레일의 음향형도를 정확하게 측정하고 분석할 필요가 있다. 음향형도의 레벨은 과장의 함수로 표현되며, 각 과장은 속도와 관련된 소음 발생 주파수와 관련이 있다. 차량의 동작속도가 키질수록 전동 소음과 관련된 음향 형도 값을 측정하기 위해선 침체 및 변동을 제거시킴으로써 신속한 위치 결정을 목표로 한다.
의 과장은 길어지게 되는데(\(\lambda = V/3.6f, \lambda: \text{과정(m)}, f: \text{주파수(Hz), } V: \text{속도(km/h)}, \text{전동소음에 주요한 영향을 미치는 차량의 속도는 } 50 - 120\text{km/h} \text{이며 이때의 주파수 대역은 } 500 - 2000\text{Hz} \text{가 되며 이때의 과장은 } 7 - 70\text{mm} \text{에 해당하고 레일의 음향조도(acoustic roughness)의 크기는 약 } 0.1 - 100\text{mm가 된다}\). 이러한 값은 철도현장의 측정치와 일치하는 결과로 돼 있으며, 국내 현장측정과 해석의 결과값에서 나타나는 철도 전동 소음원의 주요 주파수 대역도 약 500 - 4000Hz를 나타내는 것으로 확인되었으며 과장대역으로 볼 때 주요한 음향 조도의 과장은 5 - 250mm범위에 분포되어 있었다. 이에 따라 유럽을 포함한 국제규격도 전동소음의 측정과 분석에 사용되는 과장범위를 3.15-630mm(EN ISO 3095), 3.15 - 250mm(EN 15610), 10 - 1000mm(EN 13231-3)과 같이 정의하여 사용하고 있다.

철도차량의 운행속도별 가진 주파수와 레일표면의 주파수의 관계는 Table 1과 같으며, 한색으로 표시된 주파수와 일반적인 도시철도의 전동소음과 관련된 주파수영역이다.

Table 1. Relation between irregularity wavelength (m) and excitation frequency (Hz) [2]

<table>
<thead>
<tr>
<th></th>
<th>40km/h</th>
<th>80km/h</th>
<th>160km/h</th>
<th>300km/h</th>
</tr>
</thead>
<tbody>
<tr>
<td>4Hz</td>
<td>2.8</td>
<td>5.6</td>
<td>11</td>
<td>21</td>
</tr>
<tr>
<td>8Hz</td>
<td>1.4</td>
<td>2.8</td>
<td>5.6</td>
<td>10</td>
</tr>
<tr>
<td>16Hz</td>
<td>0.69</td>
<td>1.4</td>
<td>2.8</td>
<td>5.2</td>
</tr>
<tr>
<td>31.5Hz</td>
<td>0.35</td>
<td>0.70</td>
<td>1.4</td>
<td>2.6</td>
</tr>
<tr>
<td>63Hz</td>
<td>0.18</td>
<td>0.35</td>
<td>0.71</td>
<td>1.3</td>
</tr>
<tr>
<td>125Hz</td>
<td>0.089</td>
<td>0.18</td>
<td>0.36</td>
<td>0.67</td>
</tr>
<tr>
<td>250Hz</td>
<td>0.044</td>
<td>0.089</td>
<td>0.18</td>
<td>0.33</td>
</tr>
</tbody>
</table>

일반적으로 철도선로 현장의 레일표면 음향조도 측정을 위해서는 트롤리(Trolley)형식의 측정장치를 레일의 위치시키고 이를 작업자가 끌거나 밀어서 측정하는 방식이 주로 사용되는데, 수동측정방식으로 안전사고의 위험과 더불어 불필요한 측정속도와 장치의 진동에 의한 측정값의 불균일성이 민감하게 발생하게 된다.

이러한 문제를 해결하기 위해서 본 논문에서는 철도 해도의 레일상에서 측정자의 추가적인 작업없이 정속 자용형태하면서 높은 정확도의 데이터를 확보할 수 있는 레일표면조사 자동 측정장치의 개발과 측정한 레일의 오류를 줄이고 정확도를 증가시키기 위해 복수의 동일

변위센서로부터 얻은 측정값의 응용방법을 제시하고 데이터의 정확성을 검증하고자 한다.

2. 전동소음의 모델링과 측정방법

2.1 전동소음(Rolling noise) 모델
전동소음의 이론적인 모델은 TWINS [3,4] 모델을 기초로 측정과 해석에 사용되고 있으며, 관련된 연구는 유럽을 중심으로 활발하게 연구되어 왔다. Fig. 1에서 도시화 되어 있는 것처럼 TWINS 모델의 전동소음은 크게 차량, 레일, 장면의 전망 개념을 가지고 전파되며, 일반적으로 전동소음에 미치는 영향은 주파수대역 250Hz이상에서의 철도의 영향이 지배적이며, 2000Hz 이상에서는 차량의 영향이 지배적이고, 중간의 500Hz - 1600Hz 영역의 주파수 대역에서는 레일에 의한 소음영향이 지배적이다[1]. 따라서, 도시철도와 같이 50-80km/h의 주행속도를 가진 일반 전동차와 전동소음의 측정과 지감계적 수립을 위해서는 차량과 철도 레일표면의 음향조도 측정이 우선되어야 한다. 또한 전동소음의 음향 조도는 차량과 레일의 음향조도 주파수 응답 인스펙트인 음은 철도에 계산될 수 있으므로 철도 전동소음 저장을 위해서는 차량과 레일의 침입 조도에 대한 측정과 해석 또한 필수적이다. 차량과 레일의 조도 측정의 원리는 비슷하다고 할 수 있으나, 기하학적인 형상의 차이는 인하여 각각 다른 측정 장치를 필요로 하게 되며, 레일조도의 측정을 위해서는 레일위의 바퀴와 측정센서를 가진 트롤리형식의 장치가 주로 사용된다.

Fig. 1. TWINS calculation Model for rolling noise generation [3,4]
2.2 측정장치 및 방법

기존의 철도레일 표면의 응향조도 측정 방식은 크게 두 가지로 나눌 수 있다. 첫째는 수동식으로 이동하는 트롤리에 부착된 센서나 변형센서를 장착하고 레일표면과의 접촉에 의한 값을 읽고 상대적으로 긴 재료길이를 연속적으로 측정하는 방식이다. 또 다른 방식인 비접촉식으로, 약 1미터 이내의 측정장치는 레일의 특정 위치에 고정하고 비접촉 레이저 센서를 이용하여 레일의 표면조도를 측정하는 방식이다. 두 가지의 방식은 장단점은 가지고 있으나, 전자는 긴 거리에서 주로 사용되고, 후자는 고정식으로 레일의 특성지점의 표면조도 측정에 사용된다.

레일표면의 응향조도 측정장치는 영국의 RailMeasurement 사 [5,6], 벨기에의 APT사 [7], 독일의 Müller-BBM사 [8]에 의해 주도적으로 개발 및 개량되어 오고 있으며, 최근에는 RailMeasurement사의 CAT3 (Corrugation Analysis Trolley 3)와 APT사의 RSA(Rail Surface Analyser)에 의해 시장이 경쟁에 있어있던 시장이 독일의 Muller BBM사의 mri rail trolley와 같이 다양한 장치가 출시되어 시장이 확대되고 있다.

트롤리형식의 접촉식 방식을 사용하고 있는 대표적인 3개사의 장착별 특성 비교는 Table 2와 같으며 모두 전동소음과 관련된 레일표면의 응향조도 측정기준인 EN ISO 3095, EN 15610, EN 13231-3의 기준을 준수하고 있다. 또한 현장 사용되고 있는 측정장치들의 공통적인 특징은 측정자가 직접 수동으로 구동하며 측정하는 방식을 사용함으로써 레일 표면 조도측정에 많은 인력과 시간이 소모되며 수작업에 의한 측정방식으로 안전에 대한 대비와 측정시에 지속적인 감시와 주의가 필요하다. 그 럼에도 불구하고 유럽을 중심으로 개발된 이러한 장치는 오랜기간의 검증과 개발기간을 통해 이론적 측정기준의 경험을 적극 활용하여 신뢰도를 높이고 있으며, 해석과 분석을 위한 소프트웨어의 절차 완성도가 높다는 장점을 지니고 있다.

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Displacement</th>
<th>Acceleration</th>
<th>mri rail trolley</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Sensors</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Sensor Precession</td>
<td>0.1um</td>
<td>0.01 um</td>
<td>0.1um</td>
</tr>
<tr>
<td>Method</td>
<td>Continuous</td>
<td>Continuous</td>
<td>Continuous</td>
</tr>
<tr>
<td>Measuring speed</td>
<td><1 m/s</td>
<td>0.5 or 1 m/s</td>
<td><0.5m/s</td>
</tr>
<tr>
<td>Sampling</td>
<td>1 mm</td>
<td>1 or 2 mm</td>
<td>1 mm</td>
</tr>
<tr>
<td>Power</td>
<td>via USB port</td>
<td>via USB port</td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td><20kg</td>
<td>8kg</td>
<td>21kg</td>
</tr>
</tbody>
</table>

2.3 자동 레일조도 측정장치의 설계

본 연구에서 설계 및 제작된 레일표면 응향조도 자동 측정장치는 위에서 설명한 트롤리(Trolley)형식의 측정장치의 단점을 수동형 측정방식을 십간 간속도 제어기를 탑재하여 지정거리를 일정속도로 자동 왕복 운행 및 측정이 가능하도록 설계하고 측정데이터의 응향과 레일표면의 3차원의 동적측정을 위해 3개의 동일 변위 센서를 설치하였다.

특히, Fig. 2에서 보이는 바와 같이 1개의 주행모터를 사용하고 구동형의 미끄러짐에 대한 부정확한 주행거리의 보정을 위해 별도의 거리측정용 로타리엔코더를 추가하였으며, 레일표면조도 측정값의 정확도와 정밀도를 향상시키기 위해 적병동 조절이 가능한 3개의 변형센서를 장착하여 측정이 가능하도록 설계하였다. 또한 제작된 센서와 장치의 오차를 고려하여 본체 플로어, 세이저, 센서부, 데이터송수신부등의 장착거리를 거치부와 보조 주행부이동부에 나누어 분리화와 조합이 용이하도록 설계되어 본체 플로어에는 핵심부품을 구동부 모듈, 주행 고정부 및 가이드 모듈, 엔코더 모듈 및 센서부 모듈로 모듈화하였다. 알루미늄 프레임을 포함한 본체의 무게는 약 8kg이며, 차수는 170 x 120 x 635 mm이다.

일반적인 범위의 표면 조도측정을 위해서는 측정을 가진 변위센서(LVDT 또는 Linear Scale)가 사용되지만, 측정거리가 상대적으로 긴 센서의 움직임이 지속적으 로 발생하는 경우에는 끝단에 불필요한 장착한 변위센서를 사용하거나 측정도센서를 이용하여 측정한 값을 이동 직분을 통하여 변위로 치환하여 비교하는 방식을 사용할 수가 있다.

본 연구에서는 0.1um이하의 높은 정밀도를 가진 3개의 LVDT 센서를 적용 또는 방열배치가 가능하도록 설
계하여 장착하고 일정간격으로 벌려서 위치시켜 사용한 경우 1회의 주행시에 3개 측정선의 동시측정이 가능하도록 하였다. 즉, Fig. 2의 아래쪽 그림과 같이 적절히 위치시켜 사용할 경우 동일 측정선상에서 중복측정이 가능하게 하였다. 이러한 중복측정의 경우 세시된 응용모작은 사용하여 측정 정밀도의 항상과 오류성 데이터의 평가용보장등의 부가적인 데이터후처리가 가능하다.

Fig. 2. Rail surface roughness measuring platform (up) and multiple displacement measuring sensors (down)

특히, 레일표면 응용조건과 자동측정장치의 설계에 있어서 레일의 표면조건, 주행속도, 과장은 앞서 설명한 바와 같이 서로 해상적인 연관성을 가지기 때문에 설계시에 구동바퀴간의 축간거리와 측정주파수 및 과장범위, 정속주행의 안정성, 본체 프레이밍과의 측정 센서부의 진동분리(Vibration Isolation)에 대한 고려가 필요하다 하며, 이를 위해 본체 프레이밍의 모드대역과 진동패드를 부착하여 진동진단을 감소시켰다.

2.4 복수변위센서를 이용한 표준조건측정
측정분야에서 측정 정밀도를 높이거나 신뢰도를 높이는 방법은 여러 가지가 있을 수 있으나, 일반적으로 하나의 센서를 사용한 시스템에서의 측정정밀도는 반복정밀도(repeatability) 향상을 통해 측정정밀도를 향상하거나 교정(calibration)작업을 통해 신뢰도를 확보하는 방법이 있다. 그러나 측정환경에서 외부에 의한 점음(noise)신호가 많거나, 단위센서간의 물리적의 값의 변동이 심한 경우, 장시간 노출로 인한 센서의 물리적 손선이나 오류 발생이 높은 경우중에 있어서는 하나의 센서를 동일 측정정확도를 향상시키기 힘든 경우에, 다수의 센서를 사용한 응용 및 보조가 필요하게 된다. 동일한 측정환경에서 같은 물리량을 단조 센서를 사용하여 측정하는 대표적인 방법은 다른 종류의 센서(heterogeneous sensors)를 사용하여 같은 물리량을 측정하여 간접비교방식으로 검증하거나, 동일한 센서(homogeneous sensors)를 여러계 중첩하여 사용하여 상호 비교와 응용하는 방법으로 나눌 수 있는 데, 본 연구에서는 장치의 설계에서 설명한 바와 같이 (Fig. 2) 레일표면 환경에서 유 효한 동일한 센서 세 개를 설치하여 측정에 사용하였다(9).

동일한 센서를 사용하여 데이터를 응용하고 측정정밀도를 향상시키는 로직은 Fig. 3에 도식화하여 나타내었다. 먼저 동중의 세 개의 센서(A,B,C)의 측정값을 각각 a, b, c라고 하고 각 센서의 오차범위를 a라고 할 때 각 센서의 측정값은 a±α, b±β, c±γ으로 나타낼 수 있다(Fig. 3(b)). 이렇게 측정한 데이터의 통합(Integration)은 Fig. 3(c)와 같이 세 개의 경우로 나누어 계산될 수 있다. 첫 번째 경우(Case I)는 세 개의 측정값이 서로 범위내에 존재할 경우이며, 두 번째 경우(Case II)는 하나의 측정값이 다른 두 값의 범위를 벗어나는 경우이며, 세 번째 경우(Case III)는 세 개의 측정값이 서로 오차범위 범위에 존재할 경우의 데이터 통합방법을 설명해 주고 있다.

![Fig. 3. Multiple sensor integration diagram](image-url)
이러한 데이터 동합법을 적용하게 되면, 외관이나 노이즈에 의해 이상 최종값의 정밀도가 향상되는 결과를 얻게 되고, Case II와 같이 센서 자체의 결함이나 데이터의 신뢰가 의심되는 센서를 찾아 낼 수 있는 장점을 가지게 된다. 또한 이러한 접근법은 3개 이상의 다수개 센서를 가진 시스템에서도 확장하여 활용이 가능하다. 그러나 다수의 센서가 모두 동일하다는 가정을 가지고 있는 점을 고려하여, 서로 다른 오차범위를 가지거나 이중의 센서를 설치하여 적용할 수는 없다.

이러한 데이터 동합은 데이터를 측정한 후 후처리(Post processing) 방식으로 적용하기가 가능하며, 필요에 따라 센서 설치시간 연산이 가능하도록 변경할 수 있다.

정확해지는 이러한 국내 편도의 특성을 고려하여 약 25 dB의 측정값을 충분히 허용할 수 있도록 설계되었다 [10].

![Fig. 5. Acoustic roughness wavelength range for rolling noise and vehicle running speed](image)

또한, Fig. 5에서 나타낸 바와 같이 전동 소음의 주요한 주파수 대역인 약 500 Hz ~ 4 kHz를 기준으로 차량 동작속도와 레일표면 조도의 파장과의 관계를 도식화하였다. 그래프에서 표시된 바와 같이 자갈의 동과 속도가 높은 수록 전동 소음과 연관된 주요 음향 조도의 파장도 길어진다. 이러한 상관관계는 소음양감 수지간의 지감개념의 수렴에 있어서, 전동소음이 주요한 주파수 대역과 연관이 있는 음향조도의 파장 대역에 따라서 음향조도의 레벨을 비교하여 반영하는 것이 필요하다는 것을 나타내준다.

고속철도의 경우 국내 철도 차량의 최고운전 속도는 현재 최고 영업운전속도인 300 km/이며, 향후 차세대 동력분산형 고속철도는 상용화후 영업운전속도 370 km/h를 목표로 하고 있다. 약 60 km/h 이하의 속도 대역에서는 전동 소음 성분이 동력 소음 성분보다 작아지는 영역이다. 따라서 속도별로 차이는 있으나 Fig. 5에서 주요한 음향 조도의 파장 대역은 0.005 ~ 0.25 m 범위 내에 존재함을 알 수 있다.

3. 결과 및 고찰

3.1 일반철도 음향조도 측정결과

현재 사용되고 있는 국내 일반철도의 및 지선에서 해외의 RSR Trolley형식의 음향조도 측정장치를 이용하여 측정한 레일표면조도 값을 과정으로 나타내며 Fig. 4와 같다. 결과값은 분석해 보면 표면조도의 측정값은 불은색 점선으로 나타낸 ISO 3095 기준장기(보온색 점선)를 상회하는 과장대역이 존재한다는 것을 알 수 있다. 그러나 일반적으로 측정측정 데이터의 크기 폭은 ISO 3095 기준값에서 대략 -15에서 +10 dB의 범위안에 있음을 확인할 수 있었다.

![Fig. 4. Rail surface roughness of domestic railway vehicles](image)

Fig. 4의 측정값을 바탕으로 개발된 차동 표면조도 측정장치는 이러한 국내 편도의 특성을 고려하여 약 25 dB의 측정값을 충분히 허용할 수 있도록 설계되었다 [10].
을 수행한 후에 현장에 설치된 10m의 표준레일 구간을 설정하고 반복 측정작업을 진행하였다.

측정장치에 사용된 센서는 0.1μm의 측정 정밀도를 가지는 3개의 동일 LVDT(Linear Variable Differential Transformer) 변위 센서를 사용하였다. 측정시점은 Fig. 6에 보이는 것과 같이 실제 레일에 10미터의 표준구간을 정하고 제작된 응향도 자동측정장치를 사용하여 현장측정을 수행하였다. 측정속도는 대략 1m/s이하로 설정하여 정속측정이 가능하도록 하였으며, 측정시의 생플립간격은 0.3mm(거리기준)로 지정하였다. 생물공과는 벌개로 데이터저장은 장기측정에 따라 데이터량을 줄기 위해 해석에 필요한 1mm간격의 유호데이터로 저장하였다.

Fig. 6. Rail surface roughness measurement with automatic running platform

Fig. 7. Results of rail roughness measurement with multiple sensors and integration

Fig. 8. 1/3 octave roughness spectrum with multiple sensors and integration

측정결과는 Fig. 7과 Fig. 8에 나타내었으며, Fig. 7은 10미터의 표준구간의 레일에서 거리에 따른 레일표면의 응향도 데이터를 나타낸다. 측정값의 그래프에서 동일한 3개의 센서에서 측정한 데이터 값을 서로 차이를 보여주고 있으며, 데이터 통합방식에 따른 측정 값은 검정색의 실선으로 표시하였다. Fig. 8은 레일표면 측정값의 1/3 옥타브 스펙트럼 데이터이다. 각각의 결과 그래프의 상부 그래프는 전진방향의 데이터 값을 나타내고 하단부의 그래프는 후진방향으로 진행하며 측정한 값을 나타낸다. 진행방향과 측정점의 변동에 의해 측정값은 차이가 있음을 보여주고 있다.

Fig. 7과 Fig. 8의 데이터는 동일한 측정치를 바탕으로 나타낸 그래프이며 검정색 실선으로 표시된 그래프는 Fig. 3에서 제시한 데이터 통합법이 적용된 그래프이다. 이는 3개의 동일 센서값을 통합 보정한 값(검정색 실선)이 개별 센서 상호간의 데이터 값의 차이에도 불구하고 일정한 값을 유지하고 있음을 보여주고 있다.

Fig. 8에서 볼 수 있는 바와 같이 표시된 적선은 국제규격인 ISO-3095에서 레일표면주도 관리에 관한 계약으로 나인위의 가설기를 갖는 레일은 해당과정에서 유지 보수나 관리가 필요함을 나타내고 있다. 특히 Fig. 8 상부의 결과 그래프에 검정색 실선으로 나타낸 통합값은 일부 과정에서 ISO-3095계의 아래쪽에 위치할 수 있음을 보여주고 있으며, 동일한 결과가 Fig. 8 하단부의 그래프에도 일관하게 나타남을 확인할 수 있었다.
4. 결론
본 논문에서는 철도차량의 운행에서 발생하는 진동소음 유발을 방지하기 위한 레일표면이 부드럽고 원활한 표면을 유지하기 위하여 새로운 자동 점검차량이 제작되었다. 그 결과는 레일의 안정성과 안전성을 높이면서도 운행성능을 simultaneously 유지하는 데 도움이 된다. 또한, 본 논문에서는 이와 같은 방법론을 기반으로 하는 새로운 방법론을 이용하여 레일의 안정성을 높이면서도 운행성능을 simultaneously 유지하는 데 도움이 된다.

References

DOI: http://dx.doi.org/10.1016/j.jsv.2005.08.046

고 효 인(Hyo-In Kho)

[정회원]

- 2004년 7월 : Technical University Berlin (응용공학박사)
- 2004년 9월 ~ 현재 : 한국철도기술
 논리연구원 책임연구원

<관심분야>
응용공학, 철도소음