Evaporation Heat Transfer and Pressure Drop of R-404A at Low Flow Rates in 9.5 mm O.D. Smooth and Microfin Tubes

Nae-Hyun Kim

Department of Mechanical Engineering, Incheon National University

Abstract A significant amount of studies were performed on evaporation heat transfer and pressure drop in microfin tubes. Most studies, however, focused on the refrigerants used in air-conditioners or heat pumps, and very limited information is available on R-404A, which is used in low temperature refrigeration. In this study, the evaporation heat transfer and pressure drop characteristics of R-404A in a 9.5 mm O.D. microfin tube were investigated for the mass flux range from 80 kg/m²s and 200 kg/m²s. A smooth tube of the same outer diameter was also tested for comparison. The results showed that the heat transfer enhancement ratio of the microfin tube increased with increasing mass flux and the heat flux decreased. The relative contribution of the convective heat transfer and the heat flux on total heat transfer was attributed to the observed trend. The pressure drops of the microfin tube were slightly (maximum 28%) larger than those of the smooth tube. Existing correlations do not adequately predict the measured heat transfer coefficients of pressure drops, probably due to the test range of the present study, which is outside of the existing correlations.

Keywords: Evaporation, Heat transfer, Pressure drop, Microfin tube, R-404A, Mass flux

1. 서론

마이크로판관은 가정용 에어컨이나 히트 폴프의 증발

기나 응축기에 널리 사용되고 있다[1,2]. 마이크로판관

은 평활관에 비하여 압력손실 대비 전력 축소 효과가 우

수한 것으로 알려져 있다. 마이크로판관의 증발 열전달

상기 문헌 조사 결과는 R-404A의 증발 열전달에 대한 연구가 매우 제한되어 있을음을 보여준다. 특히 소형 저온 식품 냉동기, 에어컨, 차량용 냉조기 등 등의 경우 집합 유속이 200 kg/m²s 이하로 형성되는데 이 부분에 대해서는 추가 연구가 필요하다[14]. 참고로 집합 유속 이 낮아지면 관 내 유동 형태가 상증류에서 상증류로 변환되고 증발 열전달 특성도 변화하게 된다. Fig. 1에 소형 제조용의 증발기를 나타내었다. 이스 큐브장 형성되는 사각 주형 외에 외경 9.5 mm 증발관이 지그재그 형태로 부작용되어 있음을 보여준다.

본 연구에서는 외경 9.5 mm 마이크로관관에서 R-404A 증발 실험을 수행하였다. 실험은 형광 유속 (80~200kg/m²s)과 열유속 (5~15kW/m²)을 변화시키며 수행되었고 포화 온도는 10℃로 유지하였다. 이를 위하여 풍활관에 대한 실험도 수행하였다. 또한 실험 결과를 기존 상관식들의 예측치와 비교하여 상관식의 적용가능성도 검토하였다.

![Fig. 1. Schematic drawing of the evaporator with ice cups (unit: mm)](image)

![Fig. 2. Cross-sectional view of the microfin tube](image)

Table 1. Detailed dimensions of the microfin and the smooth tube

<table>
<thead>
<tr>
<th></th>
<th>Microfin</th>
<th>Smooth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dc (mm)</td>
<td>9.52</td>
<td>9.52</td>
</tr>
<tr>
<td>Dv (mm)</td>
<td>8.88</td>
<td>8.32</td>
</tr>
<tr>
<td>Dh (mm)</td>
<td>8.46</td>
<td>8.32</td>
</tr>
<tr>
<td>Dq (mm)</td>
<td>8.63</td>
<td>8.32</td>
</tr>
<tr>
<td>Dl (mm)</td>
<td>5.54</td>
<td>8.32</td>
</tr>
<tr>
<td>Au (mm²)</td>
<td>58.5</td>
<td>54.4</td>
</tr>
<tr>
<td>At (mm²)</td>
<td>0.0422</td>
<td>0.0261</td>
</tr>
<tr>
<td>Aw (mm²)</td>
<td>0.0271</td>
<td>0.0261</td>
</tr>
<tr>
<td>Aw/Ae</td>
<td>1.56</td>
<td>1.0</td>
</tr>
<tr>
<td>Pe (mm)</td>
<td>42.2</td>
<td>26.1</td>
</tr>
<tr>
<td>e</td>
<td>0.2</td>
<td>-</td>
</tr>
<tr>
<td>n</td>
<td>60</td>
<td>-</td>
</tr>
<tr>
<td>β</td>
<td>18</td>
<td>-</td>
</tr>
<tr>
<td>γ</td>
<td>53</td>
<td>-</td>
</tr>
</tbody>
</table>
2. 실험 장치 및 방법

2.1 마이크로판관 제원

Table 1에 의거 9.5 mm 마이크로판관과 평활관의 제원이 나타나 있다. Fig. 2는 마이크로 판관의 단면도를 보여준다. Table 1에서 나타나 있듯이 마이크로판관의 외경(D_i)은 9.52 mm, 둘레의 직경(D_o)은 8.88 mm, 원심 직경(D_m)은 8.46 mm, 용융(melt-down) 직경(D_m)은 8.63 mm, 수력 직경(D_0)은 5.54 mm, 점수 값이 (P_a)는 42.2 mm, 유효 단면적(\textit{A}_m)은 58.5 mm^2, 내부 전면적(\textit{A}_m)은 0.0422 m^2, 용융 전면적(\textit{A}_m)은 0.0271 m^2, 레이ʔ(\textit{Re})는 2 mm, 레이터(\textit{Re})는 15도, 레이터(\textit{Re})는 40도이다. 평활관의 경우 외경(D_o)은 9.52 mm, 내경(D_0)은 8.32 mm이다. 용융 전면적(\textit{A}_m)은 마이크로판을 늘여 평활관을 만들었을 때 연어지는 면적으로 \textit{A}_m = \pi D_o L로 계산된다.

2.2 실험 장치 및 시험 방법

Fig. 3에 실험장치의 개략도를 나타냈다. 본 연구에 사용된 실험장치들에 대해서는 Kim 등[15]의 논문에 상세히 기술되어 있다. 냉매는 시험부에 일정 진도로 유입되고 환경부에서 흐르는 고온수에 의해 증발이 일어난다. 시험부를 나온 2상 냉매는 헤터의 냉각수 용량기에 들어가 융차된 후 펌프와 유량계를 지나 배관부로 공급된다. 이 때 냉매 및 유량은 펌프에 공급되는 냉량 중 일정을 유지하여 조절하였고 시험부 입구 진도는 예열기에서 조절하였다. 또한 열유속은 환경부를 흐르는 고온수의 온도로써 조절하였다.

Fig. 4에 시험부 상세도를 나타냈다. 시험부는 전열관과 환경부로 구성된다. 냉매는 전열관 내측을 흐르고 고온수는 환경부를 흐르며 내측의 냉매를 증발시킨다. 이러한 정상에서 끝 내측 증발 열전달계수를 정밀하게 측정하려면 환경부의 열전달을 최소화하는 것이 필요하다. 이를 위해서는 환경부 간격을 줄여 고온수의 유속을 크게 할 필요가 있다. 하지만 유속이 커지면 입출구 온도 차가 적어지고 따라서 측정 불확도가 증가한다. 신포 계산을 통하여 최적 간격 2.0 mm가 얻어졌다. 이 간격은 Fig. 4에 나타나 있듯이 텔프론 바늘을 가공하여 형성하였다. 또한 환경부 직경을 줄이기 위하여 전열관 곡직 0.3 mm의 니트로선을 2.0 mm 뷔치로 감았다. 시험부 양단에는 시험 전열관과 실험장치의 배관을 연결시켜주는 연결구(connecting block)를 설치하였다. 연결구 상부에는 직경 1.0 mm의 압력관이 가공되어 있다.

Fig. 3. Schematic drawing of the apparatus

Fig. 4. Detailed drawing of the test section
온도는 각각 열전체 5개로 구성된 셰모울(thermowell)을 사용하여 방과 입력, 환경과 고온은 입력을 그리고 열전기 인식자에서 측정되었다. 입력은 시험관 입구부와 에열기 인식자에서 측정되었다. 이 입력들은 방예의 상태를 파생한 후 환경하에 실험되며 사용되었다. 시험부
차압은 차압 트랜스듀서로 측정되었고 방예와 고온의 유량은 정밀도 1.5×10−6 m3/s의 접착유량계를 사용하여 측정되었다. 중압 열전달 실험은 최대 유량과 전도에서 시작하여 9.0에서 0.2와 접착유속 (200 kg/m²s)에서 80 kg/m²s, 유속수 (15.0 kW/m²s에서 5.0 kW/m²)를 줄여가며 수행되었다. 시험 중 환경온도는 10°C로 유지되었다.

2.3 자료처리
측정된 열전달율 U와 환경부 열전달계수 h로부터 단 대축 전류 열전달계수 h는 아래 식으로 구해진다. 여기서 Am은 용융 전열적이고 An은 관절 중간 위치에서의 전열적이고, t는 전열관 두께, k는 열전도도이다.

\[h_i = \left(\frac{1}{U_i} - \frac{1}{h_o} \right) \frac{A_m}{A_o} - k \frac{t_i}{kA_m} \]
(1)

환경부 열전달계수 h는 Wilson plot[16]로부터 구하였다. Wilson plot 실험 시 중요한 사항 중 하나는 단 대축과 환경부의 두 관절 부위를 모두 단열 유동이라 한다는 것이 다. 이를 위하여 전열관 외측에 직경 0.3 mm 니크로몬 온 2.0 mm 간격으로 감아 단열을 측정하였다. Wilson plot로부터

구해진 환경부 열전달계수는 다음과 같다.

\[Nu_{th} = 0.141Re^{0.79}Pr^{0.4} \]
(2)

여기서 Nu는 환경부의 Nu스, Re는 환경부의 Reynolds 수, Pr는 물의 Prandtl 수이다. 식 (2)의 적용 범위는 1400 ≤ Re ≤ 4200이다. 중압 열전달 실험 시 식 (2)로부터 구해진 환경부 이차방정식을 전체 열전도계의 1/3 가량 되었다. 이 값은 환경부의 유속을 증가시키면 감소하나 이 경우 전열량 측정 분산도가 증가한다. 실험 계산을 통하여 환경부 유효 (1.0 liter/min)이 결정되었고 이 때 Reynolds 수는 2400이었다. 시험부의 평균 전도는 식 (3)으로 구해진다.

\[x_{ave} = x_{in} + \frac{\Delta x}{2} \]
(3)

여기서 Δx는 시험부에서의 전도 변화량 (0.07에서 0.37)으로 접착유속이 감소하면 증가한다. 시험부 입구 전도는 식 (4)로 구해진다.

\[x_{in} = \frac{1}{k_f} \left[\frac{Q_p}{m_r} - c_p(T_{sat} - T_{p,in}) \right] \]
(4)

여기서 Qp는 열수로 공급된 열량이고 Tp是 액체부 입구의 방과 온도, T是 환경온도, m_r는 방예의 점열, \(m_r \)은 방예 유량, c_p는 방예의 비열이다. 실험 데이터를 훨씬 때 해석[17]을 수행하고 그 결과를 Table 2에 수록하였다. 열전달계수는 최대 ±13.0%, 압력손실은 최

3. 결과 및 고찰
3.1 증발 열전달
실험 결과의 신뢰도를 확인하고 마이크로관관과 비교하기 위하여 우선 평가관에서 증발 열전달 실험을 수행하였다. Fig. 5에 열유속 5 kW/m²s에서 증발 열전달계수
을 나타내었다. Fig. 5는 접착유속이 증가함에 따라 열전달계수가 증가함을 보인다. 또한 온도 접착유속에서는 (G = 200 kg/m²s) 전도가 증가할수록 열전달계수가 증

\[x_{ave} = x_{in} + \Delta x/2 \]
(3)

여기서 Δx는 시험부에서의 전도 변화량 (0.07에서 0.37)으로 접착유속이 감소하면 증가한다. 시험부 입구 전도는 식 (4)로 구해진다.

\[x_{in} = \frac{1}{k_f} \left[\frac{Q_p}{m_r} - c_p(T_{sat} - T_{p,in}) \right] \]
(4)

여기서 Qp는 열수로 공급된 열량이고 Tp是 액체부 입구의 방과 온도, T是 환경온도, m_r는 방예의 점열, \(m_r \)은 방예 유량, c_p는 방예의 비열이다. 실험 데이터를 훨씬 때 해석[17]을 수행하고 그 결과를 Table 2에 수록하였다. 열전달계수는 최대 ±13.0%, 압력손실은 최

3. 결과 및 고찰
3.1 증발 열전달
실험 결과의 신뢰도를 확인하고 마이크로관관과 비교하기 위하여 우선 평가관에서 증발 열전달 실험을 수행하였다. Fig. 5에 열유속 5 kW/m²s에서 증발 열전달계수
을 나타내었다. Fig. 5는 접착유속이 증가함에 따라 열전달계수가 증가함을 보인다. 또한 온도 접착유속에서는 (G = 200 kg/m²s) 전도가 증가할수록 열전달계수가 증

\[x_{ave} = x_{in} + \Delta x/2 \]
(3)

여기서 Δx는 시험부에서의 전도 변화량 (0.07에서 0.37)으로 접착유속이 감소하면 증가한다. 시험부 입구 전도는 식 (4)로 구해진다.

\[x_{in} = \frac{1}{k_f} \left[\frac{Q_p}{m_r} - c_p(T_{sat} - T_{p,in}) \right] \]
(4)

여기서 Qp는 열수로 공급된 열량이고 Tp是 액체부 입구의 방과 온도, T是 환경온도, m_r는 방예의 점열, \(m_r \)은 방예 유량, c_p는 방예의 비열이다. 실험 데이터를 훨씬 때 해석[17]을 수행하고 그 결과를 Table 2에 수록하였다. 열전달계수는 최대 ±13.0%, 압력손실은 최

3. 결과 및 고찰
3.1 증발 열전달
실험 결과의 신뢰도를 확인하고 마이크로관관과 비교하기 위하여 우선 평가관에서 증발 열전달 실험을 수행하였다. Fig. 5에 열유속 5 kW/m²s에서 증발 열전달계수
을 나타내었다. Fig. 5는 접착유속이 증가함에 따라 열전달계수가 증가함을 보인다. 또한 온도 접착유속에서는 (G = 200 kg/m²s) 전도가 증가할수록 열전달계수가 증

\[x_{ave} = x_{in} + \Delta x/2 \]
(3)

여기서 Δx는 시험부에서의 전도 변화량 (0.07에서 0.37)으로 접착유속이 감소하면 증가한다. 시험부 입구 전도는 식 (4)로 구해진다.

\[x_{in} = \frac{1}{k_f} \left[\frac{Q_p}{m_r} - c_p(T_{sat} - T_{p,in}) \right] \]
(4)

여기서 Qp는 열수로 공급된 열량이고 Tp是 액체부 입구의 방과 온도, T是 환경온도, m_r는 방예의 점열, \(m_r \)은 방예 유량, c_p는 방예의 비열이다. 실험 데이터를 훨씬 때 해석[17]을 수행하고 그 결과를 Table 2에 수록하였다. 열전달계수는 최대 ±13.0%, 압력손실은 최

3. 결과 및 고찰
3.1 증발 열전달
계수가 증가함을 보인다. 또한 진도가 증가할수록 열전달계수가 감소하는 경향을 보이는데 열유속이 증가할수록 그 경향이 심하게 나타난다. 이는 절은한 바와 같이 열유속이 증가할수록 대류 열전달의 영향이 상대적으로 작게 나타나기 때문이다. 하지만 Fig. 6의 경향은 절량유속이 작은 경우이고 절량유속이 큰 경우는 대류 열전달의 영향이 크게 나타나 진도의 증가에 따라 증발 열전달 계수가 증가하게 된다[1].

Fig. 7에 평활관 내 증발 열전달계수를 상관식의 예측치[18-21]와 비교하였다. Table 3에는 RMS 오차를 나타내었다. Fig. 7은 Knudlikar[19]를 재해하고 상관식의 평활관 내 구조를 파악하여 계산한 값인 상관식의 예측치를 기반으로 계산되었다. 또한 Table 3에 미리 근관에서 Gungor와 Winterton[20] 상관식이 실험 데이터를 가진 것을 예측도(RMS 오차 0.32)를 보여준다.

Fig. 8에 열유속 5 k/Wm²에서 마이크로관관 내 증발 열전달계수를 나타내었다. 비교를 위하여 평활관의 열전달계수도 동시에 나타내었다. 마이크로관관에서는 기준 열전달계수는 기준 열전달계수와 다르게 계산된다. 본 연구에서는 응용 열전달계수(Amp = πDmL)를 기준으로 열전달계수를 산정한다. Fig. 8은 절량유속과 진도가 증가함에 따라 열전달계수가 증가함을 보여준다. 이는 평활관관과 다른 경향인데 마이크로관관의 경우 관에 의해 유발되는 환경으로 인하여 열유속보다는 대류 열전달이 저절환가진 전달 매커니즘이 되기 때문이다. 진도 0.5에서 전열작용비(마이크로관관의 열전달계수와 평활관 열전달계수의 비)는 절량유속 80 kg/m²에서는 1.43, 100 kg/m²에서는 1.47, 200 kg/m²에서는 1.49로 절량유속이 증가함에 따라 다소 증가하였다. 그 이유를 파악하기 위하여 본 데이터를 Doretti 등[22]의 유동식선도(Fig. 9)에 나타내었다. 여기서 X는 Martinelli 인차이고 Jg는 결로가 기계적속도이다[1]. Fig. 9과 평활관의 경우 모든 데이터가 상충하는 반면 마이크로관관에서는 100 kg/m²의 데이터 일부는 200 kg/m²의 데이터가 환상관 영역에 있음을 보여준다. 이는 마이크로관관이 유발하는 선루이Due와 마이크로관관의 실험 데이터가 상충하지는 않으나 대류 열전달계수가 증가하는 경향을 보여준다. 따라서 절량유속의 증가와 더불어 전열작용비도 증가하게 된다.
이란 출연한 바와 같이 마이크로관관의 경우 관에 의해 유발되는 환상류로 인하여 열유속보다는 대류 열전달이 저배인 철림 메커니즘이 있기 때문이다. 진도 0.4에서 전열전달비는 열유속 kW/m2에서 3.2, 10 kW/m2에서 1.18, 15 kW/m2에서는 1.15로 열유속이 증가함에 따라 다소 감소하였다. 이는 마이크로관관의 주된 측면 메커니즘이 대류 열전달을 증대시키는 것이기 때문에 열 유속이 커지면 대류 열전달의 비중이 상대적으로 적어져 전열전달비가 감소하게 된다.

Fig. 11에 본 실험 데이터와 기존 마이크로관 튜브 내 증발 열전달 상관식[8, 23-29]의 예측치를 비교하였다. Table 4에는 RMS 오차를 나타내었다. 이 그림은 Goto 등[26]의 상관식이 실험자료를 잘 예측(0, 20)을 보여준다. 나머지 대부분의 상관식은 실험자료를 과소 예측하고 Kooyama 등[23]의 상관식은 실험자료를 과대 예측한다. Goto 등[26]의 상관식은 동합 열전달계수를 Boling 수와 Martinelli 인자의 함으로 구하므로 환상류 영역은 물론 환상류 영역에 대해 적용 가능하다.

3.2 압력 손실

증발 열전달 실험과 동시에 시험부 압력손실도 측정되었다. 측정된 압력손실은 가속손실과 마찰손실의 합이다.

\[- \frac{dP}{dx} = \left(- \frac{dP}{dx} \right)_a + \left(- \frac{dP}{dx} \right)_f \]

(5)

\[\left(- \frac{dP}{dx} \right)_a = G^2 \frac{d}{dx} \left[\frac{x^2}{\rho_0 \alpha} + \frac{(1-x)}{\rho_1 (1-\alpha)} \right] \]

(6)

가속손실을 계산하기 위해서는 기공율(α)은 알아야 하는데 평활관에 대해서는 기공율에 대해 다수의 모델이 존재한다[31-33]. 하지만 마이크로관관의 경우는 일반화된 모델이 존재하지 않고 평활관 모델이 그대로 사용된다. Newell과 Shah[34]는 마이크로관관 내 기공율은 대략 평활관과 같다고 보고하였다. 본 연구에서는 Zivi[31]의 기공율 모델을 사용하여 가속손실을 계산하였다.

Fig. 12와 13에 질량 유속과 열유속에 따른 평활관과 마이크로관관의 마찰손실을 나타냈다. 이 그림은 질량 유속과 진도가 증가함에 따라 마찰손실이 증가함을 보여준다. 또한 마이크로관관의 마찰손실이 평활관의 마찰손실보다 다소 (최대 28 %) 크게 나타났다.
Fig. 10. Evaporation heat transfer coefficients in the microfin tube showing the effect of heat flux.

Fig. 11. Comparison of the microfin tube heat transfer coefficients with predictions by existing correlations.

Table 4. RMS errors of the microfin tube correlations

<table>
<thead>
<tr>
<th>Correlation</th>
<th>RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Koyama et al. [23]</td>
<td>0.42</td>
</tr>
<tr>
<td>Thome et al. [25]</td>
<td>0.34</td>
</tr>
<tr>
<td>Goto et al. [26]</td>
<td>0.21</td>
</tr>
<tr>
<td>Newell and Shah [27]</td>
<td>0.34</td>
</tr>
<tr>
<td>Channra & Mago [29]</td>
<td>0.52</td>
</tr>
<tr>
<td>Hamilton et al. [8]</td>
<td>0.61</td>
</tr>
<tr>
<td>Kido et al. [24]</td>
<td>0.74</td>
</tr>
<tr>
<td>Cavallini et al. [40]</td>
<td>0.44</td>
</tr>
<tr>
<td>Choi et al. [41]</td>
<td>0.51</td>
</tr>
<tr>
<td>Newell & Shah [27]</td>
<td>0.65</td>
</tr>
<tr>
<td>Goto et al. ((\phi_x)) [26]</td>
<td>0.58</td>
</tr>
<tr>
<td>Goto et al. ((\phi_t)) [26]</td>
<td>0.53</td>
</tr>
<tr>
<td>Bandarra Filho et al. [42]</td>
<td>0.43</td>
</tr>
</tbody>
</table>

Fig. 12. Frictional pressure drops of the smooth and the microfin tube showing the effect of mass flux.

Fig. 13. Frictional pressure drops of the smooth and the microfin tube showing the effect of heat flux.

Fig. 14. Comparison of the smooth tube frictional pressure drops with predictions by existing correlations.
4. 결론

본 연구에서는 낮은 질량유속 (80 kg/m2s에서 200 kg/m2s)에서 외경 9.5 mm 마이크로프린 내 R-404A 중
발 열전달 실험을 수행하였다. 실험 중 포화온도는 10°C
로 유지하였다. 비교를 위해 외경 9.5 mm 평행관에 대
한 실험도 수행하였다. 주된 결론은 다음과 같다.

(1) 마이크로프린 튜브의 전열촉진비는 질량유속이 증가함수록, 열유속이 감소함수록 증가한다. 이러한
현상은 마이크로프린에 의한 대류 열전달의 증가와 열유속의 상대적 기여에 의한 것으로 판단된다.
(2) 실험 범위에서 마이크로프린관의 마찰손실이 평판
관의 마찰손실보다 다소 크다 (최대 28%).
(3) 기존 상관식은 자유경 R-404A 열전달계수 및 압
력손실을 적절히 예측하지 못하는데 이는 본 실험
범위가 기존 상관식의 범위 밖에 있기 때문으로
판단된다.

References

[38] J. Moreno Quien, J. R. Thome, "Flow Pattern Based Two-Phase Frictional Pressure Drop Model for
DOI: https://doi.org/10.1016/j.ijheatfluidflow.2007.01.004

DOI: https://doi.org/10.1016/1359-4311(95)00076-3

DOI: https://doi.org/10.1016/j.ijrefrig.2004.04.014

김 내 현(Nae-Hyun Kim)

[정회원]

- 1994년 3월 ~ 현재 : 인천대학교 기계공학과 교수

<관심분야>
열전달, 공기조화 및 내부

36