An Analysis on Shipment Structure of Field Tangerine in Jeju

Seong-Bo Ko

Dept. of Applied Economics at Jeju National University,
Research Institute for Subtropical Agriculture and Animal Biotechnology & SARI

Abstract The purpose of this study is to analyze the shipbuilding structure of field tangerine by ten days and by month. By estimating and analyzing the price flexibility function of field tangerines, this study determines whether the shipment control can stabilize and increase the income of field tangerine farmers and provides policy implication. Considering the overall market, a 1% increase in shipment volume indicates that the coefficient of price flexibility varies with ten days and month. The greatest decline is from late October to early January. Therefore, a greater necessity of shipment control is required during late October and early January. The coefficient of the dummy variable (DUM_Q) indicates the year in which the quality declines is statistically significant and sign. The coefficient of the dummy variable (DUM02) represents the year in which more than 7 days after the New Year holidays are in February is statistically significant and sign from early October to late January. Therefore, it can be seen that the necessity of shipment control is more required when New Year holidays are in February. The greatest decline in the coefficient of price flexibility is from October to December. Therefore, a greater necessity of shipment control is required during October and December. The signs of coefficients of DUM01 and DUM_Q dummy variable of the price flexibility function suggest that the need for shipment control is more important when quality is worse than better quality and that the necessity of shipment control is more required when New Year holidays are in February, respectively.

Keywords: Field Tangerine, Price Flexibility Function, Shipment Control, Shipment Structure, the Coefficient of Price Flexibility
1. 서론

노지감귤은 과일생산체계가 도래하면서 가격이 하락하는 추세이고, 농기계의 제동출하 노지감귤의 전체시장의 경쟁가격 및 수취가격은 시기별, 지역별로 큰 변동을 보이며 있다. 이러한 현상은 노지감귤 유동체계의 혼란을 초래하여, 노지감귤의 안정적 소비수요 확보와 노지감귤 출하농가들의 소득 안정성 유지에 큰 문제로 부각되고 있다.

따라서 여러 가지 노지감귤의 유동문제중에서도 출하조절이 큰 문제로 나타나고 있는데, 이는 생산된 노지감귤을 어느 시점에 등장감귤 출하하는 것이 가격의 불안정성을 감소시키고 노지감귤 농가의 조수익을 중대시킬 수 있는가의 문제이다. 이러한 문제를 해결하기 위해서는 무엇보다도 노지감귤의 시기별, 특히 순행, 일별로 구분하여 판매의 가격구조는 어떻게 형성되어 있는지에 대한 분석이 필요하다.

따라서 본 연구의 목적은 노지감귤의 출하구조를 순행, 일별로 구분하여 분석을 위하여 노지감귤의 가격선성수행률을 추정, 분석함으로써 어떻게 출하조절을 하는 것이 노지감귤농가의 소득 안정시키고, 증대시킬 수 있는지를 모색하고, 이에 따른 정책적 함축성을 도출하는 것이다.

연구대상은 노지감귤의 순행, 일별 출하량 및 출하가격(농가수취가격)에 대한 현황을 파악한다. 가격선성수행률 실정에 대한 탐색을 하고, 순행, 일별 가격선성수행률 실정, 추정 및 검정을 한다. 그리고 순행, 일별 가격선성수행률 분석과 정책적 함축성을 유도한다. 이는 시기별로 어떻게 노지감귤의 출하량 조절하는 것이 바람직한가에 대한 가이드라인을 제시할 수 있을 것이다.

2. 노지감귤의 시기별 출하량 및 가격변화

2.1 노지감귤의 순별 출하량 및 가격변화

노지감귤의 1987~2016년 기간동안의 순별 출하량의 변화추이를 살펴보면, 10월 순별의 0.2% 정도 출하되는 것을 시작으로 서서히 증가하여, 11월 순별 5%를 넘어가고, 그 이후 계속적으로 증가하며 12월 하순 12.3%가 출하되어 점점기가 이른다. 그 이후 서서히 감소하지만 2월 초순까지는 5%이상의 동량 비율을 보여 주다가 2월 하순이후 그 비중이 급격하게 줄어들게 된다. 그리고 안토간 동량변동성을 나타내고 있는 범이계수(Coefficient of Variation)는 본격적인 출하가 이뤄지는 11월 초순에서 1월 중순까지는 0.318~0.388로 낮았지만, 1월 하순에 0.450으로 상승했을 때 그 수치가 급격히 증가하여 연간 순별 동량변동이 큰 변화를 겪은 것으로 나타났다. 이는 가격선성수행률 추정을 통해 확인할 수 있었지만, 최근의 본격적인 출하시기가 기존의 설계가 아닌 것이치서 이는 2월중순경에 설령이 있는 경우 오히려 기초출하를 동량증대로 인해 추출하거기인 11월과 12월의 가격형성에 악영향을 미치는 것으로 나타나게 된다. 따라서 가격구조와 배치되는 결과이다.

Table 1. Average Shipment Volume of Field Tangerine by Ten Days during 1987~2016

<table>
<thead>
<tr>
<th>Year</th>
<th>Shipment Volume</th>
<th>ten10 days/</th>
<th>Coefficient of Variation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oct. early</td>
<td>538</td>
<td>0.002</td>
<td>1.242</td>
</tr>
<tr>
<td>middle</td>
<td>2,972</td>
<td>0.014</td>
<td>0.694</td>
</tr>
<tr>
<td>late</td>
<td>8,659</td>
<td>0.040</td>
<td>0.491</td>
</tr>
<tr>
<td>Nov. early</td>
<td>11,695</td>
<td>0.054</td>
<td>0.365</td>
</tr>
<tr>
<td>mid</td>
<td>14,382</td>
<td>0.066</td>
<td>0.351</td>
</tr>
<tr>
<td>late</td>
<td>17,025</td>
<td>0.078</td>
<td>0.313</td>
</tr>
<tr>
<td>Dec. early</td>
<td>19,130</td>
<td>0.088</td>
<td>0.319</td>
</tr>
<tr>
<td>mid</td>
<td>21,197</td>
<td>0.097</td>
<td>0.318</td>
</tr>
<tr>
<td>late</td>
<td>26,899</td>
<td>0.123</td>
<td>0.387</td>
</tr>
<tr>
<td>Jan. early</td>
<td>17,737</td>
<td>0.081</td>
<td>0.335</td>
</tr>
<tr>
<td>mid</td>
<td>19,744</td>
<td>0.090</td>
<td>0.388</td>
</tr>
<tr>
<td>late</td>
<td>18,742</td>
<td>0.086</td>
<td>0.450</td>
</tr>
<tr>
<td>Feb. early</td>
<td>13,534</td>
<td>0.062</td>
<td>0.533</td>
</tr>
<tr>
<td>mid</td>
<td>9,567</td>
<td>0.044</td>
<td>0.507</td>
</tr>
<tr>
<td>late</td>
<td>6,199</td>
<td>0.028</td>
<td>0.605</td>
</tr>
<tr>
<td>Mar. early</td>
<td>4,438</td>
<td>0.020</td>
<td>0.765</td>
</tr>
<tr>
<td>mid</td>
<td>2,829</td>
<td>0.013</td>
<td>1.023</td>
</tr>
<tr>
<td>late</td>
<td>1,988</td>
<td>0.009</td>
<td>1.075</td>
</tr>
</tbody>
</table>

Total 218,296 1.000 0.355

Source: Jeju Branch Office of National Agricultural Cooperative Federation, Citrus Distribution Treatment Analysis, each year.

![Table 1. Average Shipment Volume of Field Tangerine by Ten Days during 1987~2016](image-url)
노지감귤의 1987~2016년 기간 동안의 순별 가격의 변화추이를 살펴보면, 10월 하순까지는 노지감귤 출하
물량이 바균적인 관계로 kg당 농가수취가격이 1천원을
상회하다가 출하물량이 8%로 확대되면서 12월 초순
913원으로 최고가격을 형성한 후 1월 초순부터는 1천원
수준을 상회한 후 서서히 가격이 올라 3월 초순부터는
1,200원을 상회하는 가격이 형성되는 것으로 나타났다.

Table 2. Average Real Price of Field Tangerine Received by Farmers by Ten Days during
1987~2016(2015=100) (unit: won/kg)

<table>
<thead>
<tr>
<th>Year</th>
<th>Price</th>
<th>ten10 days/ Average</th>
<th>Coefficient of Variation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oct.</td>
<td>early</td>
<td>1,332</td>
<td>0.304</td>
</tr>
<tr>
<td></td>
<td>middle</td>
<td>1,257</td>
<td>0.278</td>
</tr>
<tr>
<td></td>
<td>late</td>
<td>1,092</td>
<td>0.283</td>
</tr>
<tr>
<td>Nov.</td>
<td>early</td>
<td>962</td>
<td>0.300</td>
</tr>
<tr>
<td></td>
<td>mid</td>
<td>941</td>
<td>0.304</td>
</tr>
<tr>
<td></td>
<td>late</td>
<td>924</td>
<td>0.319</td>
</tr>
<tr>
<td>Dec.</td>
<td>early</td>
<td>913</td>
<td>0.363</td>
</tr>
<tr>
<td></td>
<td>mid</td>
<td>941</td>
<td>0.370</td>
</tr>
<tr>
<td></td>
<td>late</td>
<td>975</td>
<td>0.363</td>
</tr>
<tr>
<td>Jan.</td>
<td>early</td>
<td>1,043</td>
<td>0.393</td>
</tr>
<tr>
<td></td>
<td>mid</td>
<td>1,049</td>
<td>0.406</td>
</tr>
<tr>
<td></td>
<td>late</td>
<td>1,103</td>
<td>0.408</td>
</tr>
<tr>
<td>Feb.</td>
<td>early</td>
<td>1,141</td>
<td>0.453</td>
</tr>
<tr>
<td></td>
<td>mid</td>
<td>1,180</td>
<td>0.458</td>
</tr>
<tr>
<td></td>
<td>late</td>
<td>1,156</td>
<td>0.430</td>
</tr>
<tr>
<td>Mar.</td>
<td>early</td>
<td>1,257</td>
<td>0.402</td>
</tr>
<tr>
<td></td>
<td>mid</td>
<td>1,261</td>
<td>0.445</td>
</tr>
<tr>
<td></td>
<td>late</td>
<td>1,219</td>
<td>0.494</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>1,005</td>
<td>0.349</td>
</tr>
</tbody>
</table>

Source: Jeju Branch Office of Jeju Branch Office of National Agricultural Cooperative

2.2 노지감귤의 월별 출하량 및 가격변화
노지감귤의 1987~2016년 기간 동안의 민경균, 농사
경험을 통한 계통출하물량은 217,274톤인지만, 1987년을
제외하고는 모두 10만톤을 상회하고 있고, 특히 1997년
이후 2002년까지는 30만톤 수준을 상회하는 수치를 보
여주고 있다. 동기간동안의 월별 평균 출하비용은 10월
이 전체의 56.6%, 11월이 19.8%를 차지하고 있고, 12월과
1월이 각각 30.9%, 25.9%로 가장 많은 물량이 출하되는
것으로 나타났다. 반면에는 균일한 출하가 이뤄지는
11월과 12월이 각각 0.32가 0.33로 가장 낮은데 비해
1월은 0.37로 이보다 다소 높지만, 2월은 0.50로 급격
하게 그 변동성이 확대된 것으로 나타났다. 이는 순별 출
하물량의 분석에서 나온 결과와 맥을 같이하고 있는 것
으로 예전의 설날이 2월경에 있는 경우는 출하시기 확대
에 따른 출하물량의 분산을 통해 노지감귤 가격변화에
유리하게 작용했던 과거의 분석과는 다른 형태를 보여주
고 있다고 판단된다.

Table 3. Shipment Volume of Field Tangerine by Month and Crop Year (unit: M/T)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1987</td>
<td>3,017</td>
<td>20,747</td>
<td>32,792</td>
<td>24,574</td>
<td>12,859</td>
<td>3,917</td>
</tr>
<tr>
<td>1990</td>
<td>2,719</td>
<td>26,251</td>
<td>39,065</td>
<td>21,449</td>
<td>9,659</td>
<td>1,287</td>
</tr>
<tr>
<td>1995</td>
<td>10,904</td>
<td>48,867</td>
<td>66,031</td>
<td>58,559</td>
<td>43,092</td>
<td>19,093</td>
</tr>
<tr>
<td>2000</td>
<td>12,833</td>
<td>51,592</td>
<td>95,311</td>
<td>91,956</td>
<td>46,602</td>
<td>10,512</td>
</tr>
<tr>
<td>2005</td>
<td>11,420</td>
<td>45,103</td>
<td>55,640</td>
<td>55,058</td>
<td>40,873</td>
<td>18,909</td>
</tr>
<tr>
<td>2010</td>
<td>8,379</td>
<td>55,479</td>
<td>51,930</td>
<td>54,912</td>
<td>22,575</td>
<td>7,719</td>
</tr>
<tr>
<td>2011</td>
<td>11,347</td>
<td>57,573</td>
<td>62,159</td>
<td>41,975</td>
<td>9,599</td>
<td>760</td>
</tr>
<tr>
<td>2012</td>
<td>18,642</td>
<td>37,935</td>
<td>54,696</td>
<td>53,703</td>
<td>26,976</td>
<td>4,557</td>
</tr>
<tr>
<td>2013</td>
<td>14,178</td>
<td>38,742</td>
<td>60,403</td>
<td>47,461</td>
<td>19,452</td>
<td>5,621</td>
</tr>
<tr>
<td>2014</td>
<td>19,201</td>
<td>31,941</td>
<td>48,363</td>
<td>42,267</td>
<td>25,618</td>
<td>5,158</td>
</tr>
<tr>
<td>2015</td>
<td>16,821</td>
<td>31,178</td>
<td>58,170</td>
<td>44,982</td>
<td>11,380</td>
<td>670</td>
</tr>
<tr>
<td>2016</td>
<td>18,381</td>
<td>37,070</td>
<td>48,499</td>
<td>29,937</td>
<td>5,057</td>
<td>1,058</td>
</tr>
<tr>
<td>Avg.</td>
<td>12,169</td>
<td>43,102</td>
<td>55,226</td>
<td>47,239</td>
<td>21,506</td>
<td>7,124</td>
</tr>
<tr>
<td>mon/avg.</td>
<td>0.056</td>
<td>0.198</td>
<td>0.309</td>
<td>0.259</td>
<td>0.135</td>
<td>0.043</td>
</tr>
<tr>
<td>C. V.</td>
<td>0.519</td>
<td>0.326</td>
<td>0.338</td>
<td>0.370</td>
<td>0.508</td>
<td>0.876</td>
</tr>
</tbody>
</table>

Source: Jeju Branch Office of National Agricultural Cooperative Federation, Citrus Distribution Treatment Analysis, each year.

노지감귤의 1987~2016년 기간 동안의 kg당 월별 실
자 평균가격은 11월이 938원으로 가장 낮고, 다음으로
12월이 945원이며, 1월은 이보다 최곤한 1,059원이며
평균 1,003원으로 나타났다. 따라서, 전체평균 가격대비
100이하를 보여주는 11월과 12월로 나타났다.

Table 4. Real Price of Field Tangerine Received by Farmers by Month and Crop Year(2015=100)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1987</td>
<td>1,121</td>
<td>919</td>
<td>963</td>
<td>992</td>
<td>1,166</td>
<td>1,341</td>
</tr>
<tr>
<td>1990</td>
<td>1,539</td>
<td>1,300</td>
<td>1,326</td>
<td>1,684</td>
<td>1,901</td>
<td>2,162</td>
</tr>
<tr>
<td>1995</td>
<td>1,306</td>
<td>931</td>
<td>965</td>
<td>1,102</td>
<td>1,210</td>
<td>1,867</td>
</tr>
<tr>
<td>2000</td>
<td>1,032</td>
<td>829</td>
<td>718</td>
<td>656</td>
<td>630</td>
<td>1,139</td>
</tr>
<tr>
<td>2005</td>
<td>1,175</td>
<td>1,043</td>
<td>1,316</td>
<td>1,262</td>
<td>749</td>
<td>738</td>
</tr>
<tr>
<td>2010</td>
<td>1,319</td>
<td>1,223</td>
<td>1,246</td>
<td>1,221</td>
<td>1,025</td>
<td>1,050</td>
</tr>
<tr>
<td>2011</td>
<td>1,352</td>
<td>984</td>
<td>1,026</td>
<td>1,318</td>
<td>1,776</td>
<td>1,897</td>
</tr>
<tr>
<td>2013</td>
<td>948</td>
<td>934</td>
<td>943</td>
<td>915</td>
<td>935</td>
<td>1,068</td>
</tr>
<tr>
<td>Avg.</td>
<td>1,175</td>
<td>1,084</td>
<td>1,104</td>
<td>1,123</td>
<td>1,283</td>
<td>1,284</td>
</tr>
<tr>
<td>mon/avg.</td>
<td>0.116</td>
<td>0.936</td>
<td>0.943</td>
<td>1.056</td>
<td>1.152</td>
<td>1.212</td>
</tr>
<tr>
<td>C. V.</td>
<td>0.270</td>
<td>0.303</td>
<td>0.362</td>
<td>0.396</td>
<td>0.445</td>
<td>0.411</td>
</tr>
</tbody>
</table>

Source: Jeju Branch Office of National Agricultural Cooperative Federation, Citrus Distribution Treatment Analysis, each year.

216
3. 노지감금의 가격신축성함수 추정과 함축성

3.1 노지감금 가격신축성함수의 설정

노지감금의 가격신축성이란 일정시점에서 노지감금의 시장 출하량=생산량 또는 공급량이 유동에 따라 노지감금의 시장가격이 어떻게 변하는가를 나타내는 수치이다. 이와 같이 노지감금의 출하량, 대체재의 출하량, 그리고 여타변수와 가격간의 관계를 수학적으로 표시한 것을 노지감금의 가격신축성함수라고 하며, 다음의 식(1)과 같이 일반화할 수 있다.

\[P_t = f(Q_t, Q_j, Y_t, C_t) \]

단, \(P_t \) : 노지감금 i의 가격
\(Q_t \) : 노지감금 i의 출하량
\(Q_j \) : 노지감금 i의 생산량
\(Y_t \) : 소득
\(C_t \) : 노지감금 i의 생산비

즉, 노지감금 가격신축성함수는 노지감금 i의 가격과 출하량과의 관계, 노지감금 i의 가격과 가격성 노지감금 i와 대체재간에 있는 감금류출하량과의 관계, 노지감금 i의 가격과 소득과의 관계, 그리고 노지감금 i의 가격과 노지감금 i를 생산하는데 필요한 생산비 등과의 관계를 나타내고 있다.(1).

3.2 노지감금의 순별 가격신축성함수의 추정 결과와 함축성

노지감금의 순별 가격신축성함수는 1987~2016년까지의 30개년 자료를 이용해 전체시장에 대해서 추정하였다. 추정방법은 보통최소자승법(OLS)으로 추정하였고, 자기상관의 문제는 Durbin-Watson, LM검증하고, 자기상관의 문제가 발생된 경우는 1차 자기상관(first-order autoregression)을 이용해 제추정을 실시하였다.

추정된 식의 전체설명력(\(R^2 \))와 개별추정 회귀계수의 통계적 유의성은 충분히는 양지만, 전반적으로 양호한 것으로 나타났다. 추정식에서 \(p_t \)는 1차 자기상관 계수, D.W는 Durbin-Watson 통계량, 그리고 (t-1)은 t값을 나타내고, *, **는 10%유의수준, ***, ***는 5%유의수준, ***은 1%유의수준에서 개별회귀계수가 통계적 유의성이 있음을 각각 나타내고 있다.

전체 노지감금시장의 순별 가격신축성의 변화 추이를 살펴보면, 노지감금 출하량 1% 증가에 따른 가격신축성이 시기에 따라 상이하게 나타나고 있는데, 10월 초순은 -0.052%로 작으나 그 이후 점차 증가해 10월 하순 -0.575%, 11월 하순은 -0.793%로 정점이 보인다. 그 이후 -0.3% 수준은 변동하기 보이다가 1월 들어서는 그 값이 -0.1%에서 -0.2%로 낮은 수준을 보인후 2월 들어 -0.2% 수준 이상을 보인후 그 이후 값이 점차 작아지는 패턴을 보여준다.

실연전후 7일이상의 2월에 들어있던 해를 나타내는 DUM02의 값은 순별로 살펴보면, 10월 초순부터 12월까지는 통계적으로 확실히 그 부호가 (-)를 보이고 있다. 그렇지만 1월 초순부터는 그 부호가 (+)를 보이고 있으나 그 크기가 작고 통계적으로도 유의적이지 못하고, 2월부터는 오히려 그 부호가 (+)로 변하는 패턴을 보여주고 있다. 이러한 사실은 실연 2월에 있다면서, 보통 출하시기가 걸린지기 때문에 가격형성에 급격적인 영향을 미쳤다는 한국의 결과와 상이하다. 이러한 결과는 상식의 것처럼 보이지만, 사실은 2월의 실연 노지감금은 출하말기이고, 한라봉의 경우는 출하시기이므로 생기는 결과로 판단된다. 이것은 노지감금이 선행자를 유지하여 활동감금, 만감류, 수입요인과 경쟁하기 위해서는 출하시기를 이르는 1월말로 설정하는 것이 적절하고, 2월 중순경에 설이 있는 경우 출하조건의 필요성이 더 요구됨을 알 수 있다.

그리고 노지감금 품질이 떨어지는 것을 나타내는 더 미변수인 DUM Q의 회귀계수의 부호도 확실하게 (-)가 통계적으로도 유의적인 것으로 나타나, 가격형성에 영향을 주는 것은 확실하다. 이는 품질이 좋은 제품 품질이 낮은 수확성도에 품질관리와 출하조건의 필요성이 더 요구됨을 보여주고 있다.
\[
\text{ln(FP101)} = 7.600 - 0.052*\text{ln(FQ101)} - 0.220*\text{DUM}_Q \\
\ (29.17)^* (-1.17) (-2.10) \quad R^2 = 0.4931, \quad D. W. = 1.8527, \quad \rho_1 = 0.41
\]

\[
\text{ln(FP102)} = 9.204 - 0.254*\text{ln(FQ102)} - 0.124*\text{DUM}_Q \\
\ (22.03)^* (-4.75)^* (-1.73) \quad R^2 = 0.6749, \quad D. W. = 2.1834, \quad \rho_1 = 0.43
\]

\[
\text{ln(FP103)} = 12.271 - 0.575*\text{ln(FQ103)} - 0.119*\text{DUM}_Q \\
\ (19.85)^* (-8.65)^* (-2.35)^* \quad R^2 = 0.8138, \quad D. W. = 2.0537, \quad \rho_1 = 0.78
\]

\[
\text{ln(FP111)} = 13.909 - 0.739*\text{ln(FQ111)} - 0.281*\text{DUM}_Q \\
\ (14.75)^* (-7.37)^* (-5.67)^* \quad R^2 = 0.8377, \quad D. W. = 1.8497, \quad \rho_1 = 0.76
\]

\[
\text{ln(FP112)} = 10.178 - 0.336*\text{ln(FQ112)} - 0.388*\text{DUM}_Q \\
\ (8.97)^* (-2.76)^* (-4.69)^* \quad R^2 = 0.6952, \quad D. W. = 1.6892
\]

\[
\text{ln(FP113)} = 9.867 - 0.295*\text{ln(FQ113)} - 0.472*\text{DUM}_Q \\
\ (8.58)^* (-2.46)^* (-5.87)^* \quad R^2 = 0.6933, \quad D. W. = 1.8579
\]

\[
\text{ln(FP121)} = 9.950 - 0.301*\text{ln(FQ121)} - 0.540*\text{DUM}_Q \\
\ (8.09)^* (-2.36)^* (-5.97)^* \quad R^2 = 0.7283, \quad D. W. = 2.1363
\]

\[
\text{ln(FP121)} = 9.950 - 0.301*\text{ln(FQ121)} - 0.540*\text{DUM}_Q \\
\ (8.09)^* (-2.36)^* (-5.97)^* \quad R^2 = 0.7283, \quad D. W. = 2.1363
\]

\[
\text{ln(FP122)} = 9.669 - 0.265*\text{ln(FQ122)} - 0.599*\text{DUM}_Q \\
\ (8.26)^* (-2.21)^* (-6.76)^* \quad R^2 = 0.7799, \quad D. W. = 2.0817
\]

\[
\text{ln(FP123)} = 9.784 - 0.268*\text{ln(FQ123)} - 0.600*\text{DUM}_Q \\
\ (10.17)^* (-2.77)^* (-7.27)^* \quad R^2 = 0.8282, \quad D. W. = 2.0411
\]

\[
\text{ln(FP111)} = 8.563 - 0.143*\text{ln(FQ111)} - 0.748*\text{DUM}_Q \\
\ (9.55)^* (-1.52) (-8.98) \quad R^2 = 0.8204, \quad D. W. = 2.0865
\]

\[
\text{ln(FP122)} = 8.779 - 0.165*\text{ln(FQ122)} - 0.755*\text{DUM}_Q \\
\ (7.79)^* (-1.41) (-7.38) \quad R^2 = 0.8038, \quad D. W. = 2.1389
\]

\[
\text{ln(FP133)} = 9.454 - 0.233*\text{ln(FQ133)} - 0.688*\text{DUM}_Q \\
\ (9.99)^* (-2.35) (-6.67) \quad R^2 = 0.7631, \quad D. W. = 1.8240
\]

\[
\text{ln(FP133)} = 9.772 - 0.282*\text{ln(FQ133)} - 0.646*\text{DUM}_Q \\
\ (9.88)^* (-2.59) (-5.05) \quad R^2 = 0.6974, \quad D. W. = 2.1140
\]

\[
\text{ln(FP133)} = 10.091 - 0.326*\text{ln(FQ133)} - 0.618*\text{DUM}_Q \\
\ (12.17)^* (-3.45) (-5.11) \quad R^2 = 0.7631, \quad D. W. = 1.8240
\]

\[
\text{ln(FP133)} = 9.477 - 0.276*\text{ln(FQ133)} - 0.537*\text{DUM}_Q \\
\ (16.04)^* (-3.86) (-4.18) \quad R^2 = 0.7220, \quad D. W. = 2.1531
\]

\[
\text{ln(FP133)} = 9.183 - 0.246*\text{ln(FQ133)} - 0.466*\text{DUM}_Q \\
\ (20.98)^* (-4.45) (-3.99) \quad R^2 = 0.6578, \quad D. W. = 2.2401
\]

\[
\text{ln(FP133)} = 8.413 - 0.167*\text{ln(FQ133)} - 0.488*\text{DUM}_Q \\
\ (27.27)^* (-3.81) (-3.71) \quad R^2 = 0.6227, \quad D. W. = 2.1049
\]

\[
\text{ln(FP133)} = 8.137 - 0.135*\text{ln(FQ133)} - 0.507*\text{DUM}_Q \\
\ (23.20)^* (-2.59) (-3.47) \quad R^2 = 0.5091, \quad D. W. = 1.6739
\]

3.3 노지김출의 월별 가격신용계수율의 추정 결과와 함축성

노지김출의 월별 가격신용계수율은 1987~2016년까지의 30개월 월별 자료를 이용하여 전체시장에 대해서

218
추정하였다. 추정방법은 보통최소자승법(OLS)으로 추정한 다. 자기상관의 문제는 Durbin-Watson, LM검정을 통 해서 자기상관의 문제가 발생되는 경우에는 1차 자기상 관(first-order autoregression)을 이용하여 제추정을 실시 하였다.

추정된 식의 전체 설명력\(R^2\)과 개별 추정각계수의 통계적 유의성은 전반적으로 만족스럽지 못하지만, 항호 한 것으로 나타났다. 추정식에서 \(\rho_1\)는 1차 자기상관계 수, D.W는 Durbin-Watson 통계량, 그리고 ()안은 \(R^2\) 을 나타내고, *는 10%유의수준, **는 5%유의수준, ***는 1%유의수준에서 개별회귀계수의 통계적 유의성이 있음을 각각 나타낸다.

추정에 이용된 변수인 FQ10—FQ03와 F10—F03은 노지감금의 10월에서 다음해 3월까지의 총・합계의 계통 출하율(%)과 실제 농가수취가격(원/kg)을 각각 나타낸다.

전체시설의 계통출하율(%)을 중심으로 필로 가격신 축성을 살펴보면, 출하율 1% 증대가 가격신축성은 출
\(h\)초기인 10월이 -0.53%로 가장 높고 다음으로 11월
-0.31%. 12월 - 0.28%, 1월이 -0.18%로 최저를 기록
한후 2월 - 0.34%로 증가하는 패턴을 보여주고 있다.

그러나 다미변수인 설날인후 7일이상이 2월에 들어있
이는 설날이 2월 중순경에 있는 경우는 오히려 농민들은
설 대목을 노리자 상하기보다는 빠리 시장에서 나태판의
형태를 보여주고 있다. 다시말하면, 2월 중순경에 설날
이 있다고 해서 시장항가가 늘기보다는 소비자들이 신신한 감금을 원하고 있고, 설날감금, 한라봉, 수입오렌지와
의 경쟁에서 살아남기 위해서 출하하기를 오히려 임당기
는 때문에 가격신축이 좋지 않은 영향을 미치고 있다고
관찰된다. 따라서, 노지감금의 출하조건의 필요성은 설
날이 1월에 있는 경우보다 2월에 있는 경우에 더 요구되
고 있음을 알 수 있다.

그리고 노지감금 품질이 떨어지는 것을 나타내는 다
미변수인 DUM_Q의 회귀계수의 부호도 확실하게 (-)이
고 통계적으로도 유의적인 것으로 나타나, 가격신축에
의 영향을 주는 것은 확실하다. 이는 품질이 좋은 해보다
품질이 나쁜 수확연도에 품질관리와 출하조건의 필요성
이 더 요구됨을 보여주고 있다.

\[
\begin{align*}
\text{ln(FP10)} &= 12.063 - 0.531*\text{ln(FP10)} - 0.089*\text{DUM02} \\
& (22.93)** (-10.06)** (-2.47)** \\
R^2 &= 0.7903, \quad D.W. = 1.6937, \quad \rho_1 = 0.769,
\end{align*}
\]

\[
\begin{align*}
\text{ln(FP11)} &= 10.332 - 0.314*\text{ln(FP11)} - 0.411*\text{DUM}_Q \\
& (8.70)** (-2.77)** (-5.35)** \\
& - 0.129*\text{DUM02} \\
& (-1.81) \\
R^2 &= 0.7050, \quad D.W. = 1.5945
\end{align*}
\]

\[
\begin{align*}
\text{ln(FP12)} &= 10.185 - 0.285*\text{ln(FP12)} - 0.578*\text{DUM}_Q \\
& (8.28)** (-2.52)** (-6.72)** \\
& - 0.114*\text{DUM02} \\
& (-1.54) \\
R^2 &= 0.7895, \quad D.W. = 2.0983
\end{align*}
\]

\[
\begin{align*}
\text{ln(FP01)} &= 9.179 - 0.185*\text{ln(FP01)} - 0.726*\text{DUM}_Q \\
& (7.93)** (-1.71)** (-7.72)** \\
& - 0.064*\text{DUM02} \\
& (-0.81) \\
R^2 &= 0.8046, \quad D.W. = 1.9819
\end{align*}
\]

\[
\begin{align*}
\text{ln(FP02)} &= 10.563 - 0.339*\text{ln(FP02)} - 0.590*\text{DUM}_Q \\
& (11.36)** (-3.59)** (-5.04)** \\
& + 0.097*\text{DUM02} \\
& (0.91) \\
R^2 &= 0.7322, \quad D.W. = 2.0938
\end{align*}
\]

\[
\begin{align*}
\text{ln(FP03)} &= 8.855 - 0.190*\text{ln(FP03)} - 0.07*\text{DUM}_Q \\
& (17.70)** (-3.24)** (-4.18)** \\
& + 0.017*\text{DUM02} \\
& (0.15) \\
R^2 &= 0.6116, \quad D.W. = 1.9951
\end{align*}
\]

4. 결론

본 연구의 목적은 노지감금의 출하구조를 분석, 필로
구분하여 분석한다. 이를 위해 노지감금의 가격신축
상한수를 추정, 분석함으로써 어떻게 출하자조정을 하는
것이 노지감금농가의 소득을 안정시키고, 중대시킬 수
있는지를 모색하고, 이에 따른 정책적 함축성을 도출하
는 것이다.

노지감금 출하율 1% 증가에 따른 순별 가격신축상
현 시기에 따라 상이하게 나타나고 있는데, 10월 하순에
서 1월 초순까지의 하락폭이 큰 것으로 나타난 이 시기
의 출하조건의 필요성은 크다.

설날인후 7일이상이 2월에 들어있는 해를 나타내는
DUM02의 회귀계수의 값은 10월 초순부터 1월 하순까
지 그 부호가 (-)를 보이고 있다. 이는 설날이 1월에 있
는 경우보다 2월에 있는 경우가 물량 증대에 따른 가격 하락폭이 크다는 것을 나타낸다.

그리고 노지감귤 품질이 떨어지는 것을 나타내는 다
미변수인 DUM_Q의 회귀계수의 부호도 확실히 (-)이
고 통계적으로도 유의적인 것으로 나타나, 가격형성에
양향향을 주는 것은 확실히하다.

노지감귤 출하율 1% 증가에 따른 핫별 가격식성은
시기에 따라 상이하게 나타나고 있는데, 10월에서
12월까지의 하락폭이 큰 것으로 나타나 이 시기의 출하
조절의 필요성이 있음을 나타내고 있다.

설날연휴 7일이상이 2월에 들어있는 해를 나타내는
DUM02의 회귀계수의 값은 10월부터 1월까지 그 부호
가 (-)를 보이고 있다. 이는 설날이 1월에 있는 경우보다
2월에 있는 경우가 물량 증대에 따른 가격하락폭이 크다는
것을 나타낸다. 다시말하면, 2월 중순경에 설날이 있
d가 해서 저장했다가 판매보다 소비자들이 신선한 감
귤을 원하고 있고, 활용감귤, 원자병, 수입오렌지와의 경
쟁에서 살아남기 위해서 출하시기를 오히려 앞당기는 바
람에 가격형성이 줄지 않은 영향을 미치고 있다고 판단
된다. 그리고 노지감귤 품질이 떨어지는 것을 나타내는
d미변수인 DUM_Q의 회귀계수의 부호도 확실히 (-)
이고 통계적으로도 유의적인 것으로 나타나, 가격형성에
양향향을 주는 것은 확실히하다.

그리고 순벌 및 핫별 가격식성함수의 다미변수인
DOM_Q와 DUM02의 부호가 -는 (-)를 보인다는 것은, 품
질이 좋은 해보다 품질이 나쁜 경우에, 그리고 설날이 1
월에 있는 경우보다 2월에 있는 경우에 출하조절의 필요
성이 더 중요할 것으로 의미한다.

사사(Acknowledgments) [2015년부터]
- 세주대학교 산학협력단 연구소 연구 기간시설이 본
 연구 수행에 활용되었음.

References

DOI: http://dx.doi.org/10.1162/jkise.2016.39.3.147

DOI: https://doi.org/10.1162/jkise.2017.40.4.029

고 성 보(Seong-Bo Ko) [증신회원]

• 1995년 2월 : 고려대학교 농업경제학과 박사
• 1997년 5월 ~ 2004년 8월 : 제주발전연구원 연구실장
• 2004년 9월 ~ 현재 : 제주대학교 산업총통계학과 교수

<관심분야>
농업정책, 농업관측론, 지역산업연관 분석, 용용계량경제