반도체 열처리 공정을 위한 온도 조절기용 전력 제어장치의 설계 및 제작

중동만*, 민경일**, 황재효***

Design and Fabrication of Power Controller for Temperature Control on Semiconductor Thermal Processing

Dong-Man Joo*, Kyoung-II Min** and Jae-Hyo Hwang***

요 약 위상 제어방식을 이용한 금속열처리 장비의 온도조절기용 전력 제어장치를 설계하는 방법을 제시한다. 본 논문에서 제시된 설계 방법에 따라 전력제어장치를 설계·실험한 결과 가변입력저항성(0~198.06 V) 제어 범위에 48.356 mV(12 bit)를 얻었다.

Abstract A design method of a power controller for controlling the temperature adopted in RTP (rapid thermal processing) which uses the phase control method is presented. The power controller is fabricated by using the design method presented in this paper and is tested. As the results, the range of average voltage from the variable output is 0~198.06 V and the control resolution is 48.356 mV (12 bit) at the range of the input signal (0~10 V).

Key Words : power controller, RTP, phase control method, temperature control

1. 서 론

반도체 공정에서 열처리 공정이 기본의 노(爐, Furnace)를 이용한 방식이 금속열처리(Rapid Thermal Processing; RTP 방식)방식으로 대체되어 가고 있다. 금속열처리는 노에 의해 상당히 빠른 온도 상승 속도(수 싱-수 백 °C/sec)로 온도를 빠르게 가열 또는 냉각을 할 수 있어 열 소모비용을 최소화하였으며, load lock과 buffer chamber를 체계하여 산소나 습기의 chamber 내로의 유입을 최소화하였다. 또한 single wafer type로서 여러 종류의 chamber와 통합이 가능한지를 검증하고 있다.

금속열처리는 여러 가지의 온도 측정 방법과 온도 제어 기술의 진보로 인하여 노로 할 수 있는 여러 열처리 공정이 금속열처리로 대체되어 가고 있다. 특히, 금속열처리는 다양한 열처리 용융 분야, 고유의 단일 레이어 처리 능력, 온도 급속 변속, 다른 증류 장비와의 결합 등을 고려할 때 고밀도 반도체를 추구하는 반도체 산업에 있어서 반드시 필요한 기술이다[1].

*대학원생 충남대학교 전자공학과 석사과정
**영동대학교 정보전자공학부 부교수
***영동대학교 정보전자공학부 부교수

Taxas Instrument, US Air Force, DARPA로 구성된 미국의 금속열처리 기술연합인 MMST(Microelectronic Manufacturing Science and Technology)가 노로 할 수 있는 모든 열처리를 금속열처리로 대체 할 수 있을음을 입증하므로 열처리 장비 시장에서 금속열처리의 입자가 점차 커져 가고 있다.

고속 열처리 chamber는 웨이퍼를 가열하기 위한 heating source, chamber wall cooling, 공정에 따른 gas injection system, 온도 측정 시스템 등으로 구성되어 있다. Heating source로는 대부분의 chamber가 회로를 사용하고 있으며, 이는 랜프가 웨이퍼의 온도를 급속하게 올리는데 매우 효과적이기 때문이다[2].

금속열처리 공정 과정에서 온도의 상승과 하강시 급속한 온도 변화와 온도 평형 기술이 중요하다. 일반적으로 금속열처리 장비에서 온도 변화는 랜프에 인가하려는 전원 제어장치의 전력을 조정하여 랜프에서 발생하는 열을 변화시켜 제어한다.

국내에서 생산되고 있는 금속열처리 장비용 전력 장치는 온도 조절 능력 및 온도 평형 능력이 외국의 제품에 비해 성능이 떨어지고 있음을 뿐만 아니라, 금속열처리 장비의 요구 조건에도 적합하지 않다. 이로 인해, 현재 국내에서는 금속열처리 장비의 전력 제어장치는 외
국 제품을 사용하고 있는 실정이다.
본 논문에서는 위상 제어방식을 이용하여 급속열처리 장비의 온도 조절 가능 전력제어기 개발하고, 장치 주화로의 고속 프로세시 제어회로를 이용하여 고정밀 제어가 가능한 온도조절기관 전력제어기의 설계방법을 제시하고 제작·설립하여 그 결과를 고찰한다.

2. 전력 제어 장치

온도 제어에서 조정계의 기능에 의하여 ON/OFF 제어 방식과 연속 제어 방식으로 분류되며, 사라이스터(Thyristor)의 전력 제어를 사용한 온도 제어 장치는 게이트(Gate)회로의 입력 신호 변환으로도 ON/OFF 또는 연속 제어 등 이중한 방식에도 사용 가능하다. 반응 속도가 느린 제어 대상에 대해서는 이 방식이 적합하다. 또한 제어용이나 전기로의 형상에 의해 2위(ON/OFF)제어, 3위(비어 시분할 비례 제어, 연속 비례 제어 방식을 선택하여 할 수 있다.

그림 1에 표현된 Burst Single Cycle ON-OFF 제어 모드와 그림 2에 표현된 Advanced Single Cycle ON-OFF 제어 모드 ON/OFF제어 방식은 현재 온도가 조절기의 설정치보다 낮을 때 ON시키는 방법으로 구조가 간단하며 경제적이다. 설정치를 경계로 하여 ON/OFF되므로 2위(비어)방식에 의한 제어의 바운싱(bouncing)이 발생한다. 이를 제거하기 위하여 조절 감도를 줄이면 출력의 밸런트 현상이 생기고 오해의 영향을 받을 수 있으며 제어 정밀도가 문제가 된다.

연속 제어 방식은 노동 과정과 설정치를 비교하여 그 차단 신호의 크기에 비례하는 전원을 노동 발열체에 공급하는 방식이다. 이 보다 제어 방식만큼 적절하면 원리적으로 회로 정수로부터 피할 수 없는 제어 오차가 발생하므로 이 오차를 없애고 제어 정확도를 높기 위한 적분 동작 및 장치의 응답 속도를 향상시키기 위한 미분 동작을 적용하여야 한다.

전압(전류)제어 방식은 제어계에 대한 다소의 외란을 무시하고 노동에 가해지는 전압의 평균치 또는 실효치를 일정하게 제어하는 방식이다. 이 방식은 평균 전압(전류)제어를 하게 되므로 허터의 열이 효과는 높으나 전압의 평균치 또는 실효치 검출에 고도의 기술이 요구된다.

전위적제어방식은 출력측의 실제 전압 및 실효 전류의 두 요소를 검출하고, 합성 회로를 이용하여 실제 전력 양을 검출하여 제어하는 방식이다. 이 방식은 단화境界적 발열체가 끓임새도 발생하지 않으며 사용할 수 있어서 전력의 과부족 현상으로 인한 발열체의 수명이 단축되는 단점을 없길환경할 수 있다.

본 연구에서는 급속 열처리 장비의 발열체 수명을 단축시키기로 결정한 설계를 보완하고, 제어 정밀도와 응답 속도를 향상시키기 위해 전력제어방식에 그림 3과 같은 위상 제어방식을 적용한다[3]. 위상 제어방식에 의해 무허에 인가되어지는 출력 평균 전압은 다음과 같이 표현될 수 있다.

\[V_{OUT} = \frac{2}{T_{PERIOD}} \cdot V_m \sin \omega T \] \hspace{1cm} (1)

\[V_{OUT} : \text{출력 평균전압} \]

\[V_m : \text{입력 전원 전압 최대치} \]

\[\omega : \text{입력 전원 주파수} \]

식 (1)을 사용하여 출력 평균전압(V_{OUT})은 사이러스

![그림 1. Burst Single Cycle ON-OFF 제어 모드.](attachment:image1.png)

![그림 2. Advanced Single Cycle ON-OFF 제어 모드.](attachment:image2.png)

![그림 3. Phase Angle Firing 제어 모드.](attachment:image3.png)
2.1 마이크로 컴퓨터 제어회로
마이크로 컴퓨터를 통한 제어회로는 그림 5와 같다. 외부로부터 그림 5의 AD_IN단자를 통해 0~10 V의 입력 신호를 그림 5의 R101을 통해 AD574의 13번 핀으로 입력시킨다. AD574AJK는 아날로그 전압을 디지털 값으로 변환시키는 ADC(Analog to Digital Converting)이다. AD574AJK는 입력된 전압을 0~4095(12 bit 분배능)의 디지털 값으로 변환시켜 그림 2의 AT89C52에 전송한다. AT89C52는 ADC 변환 값을 연산하여 사이러스터 구동시간을 제어한다.

그림 6은 교류전원 신호와 사이러스터 구동시간을 제어하였을 경우의 출력 전압 파형을 나타낸 것이다. 교류 신호가 0°~90°, 180°~270°는 구간에서는 사이러스터가 차단 상태이고, 90°~180°, 270°~360°는 구간에서

그림 4. 전력제어장치 구성도.

그림 6. 교류전원신호와 제어신호.
사용하는 제어 회로 측의 절연을 시킬 수 있어 고전압에 의한 제어회로 파손을 방지할 수 있다. 그림 8은 전
브리지(Full Bridge)방식을 이용하여 플스 트랜스를 구
동시키는 사이리스터를 구동시키는 회로이다. 사이리스터
구동회로는 양(+)의 반주기와 음(-)의 반주기로
구성하였다.

2.4 사이리스터 회로
전력제어장치의 핵심 소자인 사이리스터는 그림 9와
같이 사이리스터를 빌딩으로 변형 연결하여 양(+)의
반주기와 음(-)의 반주기 모두 제어할 수 있도록 구성
하였다. 교류 공급전원의 양(+)의 반주기 사이는 그림
9의 Q5가 동작되어 LAMP를 점등시키고, 음(-)의 반
주기 사이는 그림 9의 Q6이 동작되어 LAMP를 점등
시킨다.

3. 실험 결과 및 고찰
앞 절에서 제시된 이론에 의해 급속열처리장비의 온
도조절용 전력제어장치를 제작 및 실험하였다. 그림 10

화학기술연구논문지 제3권 제4호, 2002
반도체 열처리 공정을 위한 온도 조절기용 전력 제어장치의 설계 및 제작

![그림 11. 부하 측 단사 전압 측정 과정](image1)

![그림 12. 외부제어 신호 전압의 변화에 따른 출력 전압](image2)

이 과정에서 본 때 외부제어 신호 전압이 증가함에 따라 LAMP에 인가되어지는 평균전압이 상승함을 확인할 수 있다.

그림 12는 외부 제어신호 전압의 변화에 따른 평균 출력전압을 나타낸 것으로, 평균 출력전압은 0~198.06 V로 변화하였으며, 외부 제어신호 전압에 대해 출력 평균전압이 매우 선형적으로 비례하였음을 확인할 수 있다.

4. 결론

위상 제어방식을 이용한 급속열처리 장비의 온도조절기용 전력 제어장치를 설계하는 방법을 제시하였다. 전력제어장치를 제작·시험하여 외부 제어신호 전압의 변화(0~10 V)에 따라 평균 출력 전압(0~198.06 V)이 선형적으로 제어되었고, 온도 조절 정밀도 ±1℃, 가변 출력평균전압 0~198.06 V, 제어 분해능 48.356 mV (12 bit)을 얻었다.

본 논문에서 제시한 설계방법으로 제작된 전력제어 장치는 현재 국내에서 생산되고 있는 해외산 고속 중장기 시장에 적용되고 있다.

감사의 글

본 연구는 ’99 (제7차) 산·학·연 공동기술개발 지역연구소사업 사업의 지원으로 수행되었음.

참고문헌

