Plating of Cu layer with the aid of organic film on Si-wafer

Ji-hwan Park*, So-yeon Park*, Jong-kwon Lee*, Tae-hwa Song*, Kun-kul Ryoo*, Yoon-bae Lee*, Mi-Young Lee**

Abstract In order to improve the adhesion properties of copper, MPS(3-mercaptopropyltrimethoxysilane) organic film were employed. The plasma pretreatment in pure He or H2/O2 mixed gas environment greatly increased adhesion force. Adhesion force was measured by scratch test with nano indenter. Microstructures and surface roughness were observed with scanning electron microscope(SEM). The characteristics of MPS layer for pretreatment were studied with fluorour transform infrared spectroscopic(FT-IR) and contact angle tester. The heighest adhesion was achieved in the specimen pretreated with mixed plasma and MPS coating, which was 56mN. Other specimen showed lower value by 20% to 30%. The roughness of substrate was not affected by the bonding strength of copper plating.

Key Words : MPS(3-mercaptopropyltrimethoxysilane), plasma, SAMs

1. 서 론

Patterning을 위한 lithography 방법은 반도체 제조의 핵심기술로서 최근 심년간 눈부신 발전을 했으나 최근의 patterning resolution이 nm급으로 줄어들면서 많은 어려움을 겪고 있다. 특히 nano patterning 기술은 장치, 시약 등의 기술비용이 크고 photoresist로 이용되는 고분자의 한계, 그리고 넓은 patterning속도 등 여러 가지 크고 작은 문제점이 있다[1]. 그중에서 가장 문제 가 되는 것이 patterning 재료로서 주로 쓰이는 알루미늄 (Al)과 그 합금들이다. 알루미늄 합금들은 배선 쪽이 갑 소합수록 상대적으로 커지는 비하강 신뢰도에서 문제 가 되고 있다[2].

이러한 문제점을 안고 있는 알루미늄 합금 대신 새로 운 patterning 재료로서의 구리(Cu)는 비하강이 매우 낮 아서 저항, 정전용량, 시간대차나 작동속도면에서 더욱 우수하다[3]. 그러나 구리(Cu) 배선기술을 개발하기 위해 현재는 몇가지 선행되어야 할 문제점이 있는데 Si wafer와 Cu 사이의 밀착력 불량, 공기중에서 산화가 그 것이다. 공기중에서의 산화문제는 Cu에 산화성질이 큰 원소(Mg, Al, Ti, Cr)를 첨가하면 매우 효율적인 것으로 알려져 있으나, Si와 Cu 사이의 밀착력에 대한 문제가 여전히 대두되고 있다.

이러한 문제점을 해결하기 위해 제안된 방법중 하나가 substrate에는 강한 공유결합을 하고 기능화 된 만들기는 Cu와 선택적인 반응을 하는 SAMs(self-assembled monolayers)라는 유기용액을 사용하여 wafer와 Cu 도금 중간에 밀착력을 증가시키는 방법이다[4-7].

본 실험에서는 이러한 유기물 3-Mercaptopropyltrimethoxysilane를 사용하여 반응키에서는 Si와 강한 공유결합을, 모르 부분의 반응기(-OCH3)에서는 전화액에서 석출되는 Cu와 결합을 시킴으로서 wafer와 Cu도금층 사이의 밀착력을 향상시키며, substrate인 Si- wafer와 반응기(-OCH3)에 plasma 처리로 활성화시켜
유기바막을 이용한 Si기판상의 구리피복층 형성에 관한 연구

2. 실험방법

2.1 시험 전처리

실험에 사용한 시험은 P-type (100)방향의 silicon wafer를 15×15mm의 크기로 잘라서 사용하였다. 시험의 전처리는 아세톤에서 5분간 초음파세척을 하고 손수에 세척한 후 N2 가스를 이용하여 물기를 제거한 후, 시험의 음압을 제거하기 위해 황산(H2SO4)과 과산화수소(H2O2)를 기본으로 하는 piranha 용액에서 100℃로 15분간 처리하였다. 이때 H2SO4와 H2O2의 비율은 4:1의 비율로 제조하였다. 그 후 증류수를 이용하여 세정한 후 N2 가스로 물기를 제거하였다. HF를 이용하여 silicon wafer에 생성된 자연산화막을 제거한 후에는 증류수를 이용하여 세정한 후 N2 가스로 물기를 제거하는 과정을 2회 반복하였다.

2.2 Plasma 처리 및 접촉각 측정

Silicon wafer와 유기바막 사이의 밀착력을 향상시키기 위해 시험의 표면에 He을 기본으로 하는 plasma 처리를 하였다.

O2 가스 혼합에 따른 밀착력의 변화를 알아보기 위해 He 가스에 O2 가스를 각각 1%, 5%, 10%씩 첨가하여 혼합 가스에 따른 밀착력의 변화를 알아보았다. 또한 전처리 및 plasma 처리후에 FT-IR과 접촉각 측정함으로써 시험의 표면특성을 관찰하였다.

2.3 SAMs 용액 및 무해해 구리도금액의 제조

SAMs 용액을 제조하기 위해 사용된 시약은 95%의 3-mercapropyltrimethoxysilane(MPS)로써 Aldrich 사의 시약을 구입하여 사용하였다. Toluene 20mL에 MPS를 0.4g 첨가한 용액과 ethanol 40mL에 95%의 formic acid를 0.4g 첨가한 용액을 제조하였다. Ethanol과 formic acid를 혼합한 후 30분간 대기하고 이 용액을 toluene과 MPS의 혼합액에 0.4g 첨가한 후 5분간 대기하여 SAMs 용액을 제조하였다.

무해해 구리도금액을 위한 도금액의 조성을 Table. 1에 나타내었다. 도금액과 원판재의 조성을 각각 10 : 1(v/v)의 비율로 하여 도금하였다.

3. 결과

3.1 전처리에 따른 접촉각과 표면거칠기의 변화

전처리에 따른 접촉각의 변화를 Fig. 1에 나타내었다. HF에서 처리한 시험의 접촉각은 77°로 가장 높았다. 이는 H2SO4와 H2O2의 비율이 4:1의 비율로 제조하였기 때문에, 이로 인해 높은 접촉각이 나타났다. 전처리한 시험은 O2가 1%첨가된 혼합 플라즈마 처리후의 접촉각이 70°로 가장 높았다. 전처리 후 유기바막을 coating한 뒤에는 대부분의 시험재들의 대략 50~60°사이의 접촉각을 갖는 것으로 관찰되었다. 이는 SAMs의 alkyl group이 일정한 각도를 가지면서 배열되므로 전처리후 유기바막의 coating 후 접촉각의 변화는 유기바막의 배열로 인한 것이라 판단된다. 또한 SAMs의 적정 접촉각이 일정한 각도를 가지는 것으로 관찰되었다.

3.2 전처리에 따른 밀착력

O2를 1%첨가한 plasma를 처리하였을 때 시험의 밀착력은 Fig. 1에 나타내었다. 이는 높은 접촉각이 일정한 각도를 가진 것으로 관찰되었다. 이는 SAMs의 coating은 O2가 1%첨가된 플라즈마 처리후의 값을 간단히 제시하고 있으며, 그 후가 가장 적절하다고 판단된다.

Table 1. Compositions of bath for electroless Cu-plating

<table>
<thead>
<tr>
<th>comp. solution</th>
<th>CuSO4·5H2O</th>
<th>NaOH</th>
<th>Rochelle salt</th>
<th>Formaldehyde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solution A</td>
<td>30g/L</td>
<td>40g/L</td>
<td>140g/L</td>
<td>100mL</td>
</tr>
<tr>
<td>Solution B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metal sulfate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH adjuster</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complexing agent</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reducing agent</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
력은 55.2mN으로 가장 높은 밀착력을 보였다. Fig. 2를 보면 O₂ gas의 청가비율이 5%, 10%씩 높아 점수록 도금이 쉽게 벗어져 나가는 도금 불량의 상태가 되었다.

표면에 SAMs를 코팅하였음에도 밀착력은 38.1mN으로 plasma만 처리한 시편의 밀착력과는 별다른 차이를 보이지 않았으나 plasma처리 후 SAMs coating한 시편의 밀착력은 증가하였다. 그중에서는 산소를 1%첨가하여 plasma처리한 시편의 경우에는 밀착력이 35.8mN에서 55.2mN으로 19.2mN의 밀착력이 증가하였다.

전처리에 따른 도금두께의 변화에서 전체적인 도금 두께의 차이는 무전해 도금의 특성상 별다른 차이를 보이지는 않았다. He plasma처리 후 SAMs coating한 시편의 도금두께는 0.133μm로 가장 두꺼웠으며, O₂가 1%첨가 plasma처리한 후, 도금을 하였을 경우가 0.106μm로 가장 두꺼우지 않았다.

3.3 도금층의 미세조직 관찰결과

Fig. 3(a)의 SAMs coating한 시편의 미세조직은 plasma만 처리한 시편들과 비교하였을 때, grain size는 plasma만 처리한 시편들보다 작았으며, 치밀한 구조를 나타내었다. 이러한 plasma처리는 SAMs coating한 후의 도금층에도 영향을 준다. Fig. 3(a)의 SAMs coating 후 도금한 시편의 모습과 각각의 plasma처리와 SAMs coating을 하고 난 후, 도금된 시편 Fig. 3(d, e)의 표면을 비교하면 Fig. 3(d, e)에서 관찰된 도금층은 균일하고 치밀한 양상을 나타낸다.

그러나 He plasma처리와 SAMs coating한 후에 도금한 시편의 모습 Fig. 3(d)을 He +O₂ plasma처리와 SAMs coating한 후에 도금한 시편의 모습 Fig. 3(e)과

Fig. 2. Results of nano indenter scratch test. (Thickness of coating layer)

Fig. 3. The surface morphology of Cu coating layer treated each pretreatment conditions.
4. 결론

Si 기판위에 Cu의 도금성에 대한 특성을 연구한 결과는 다음과 같다.
1. 시편을 plasma처리할 경우 접촉각은 감소하였으며
 helium에 O2를 1% 참가해mixed gas plasma 처리를 하였을 때 접촉각은 7°로 그 효과가 가장 좋았다.
2. SAMs coating 혹은, plasma 처리는 Si wafer위에
 구리도금을 가능하게 하였다.
3. SAMs coating 후 생성된 도금층의 표면거칠기는 약 50% 정도 증가하였다.
4. 도금속도는 0.1μm/5min로 전처리 조건은 도금속도에 영향을 주지 않은 것으로 판단된다.
5. Mixed gas plasma처리 후 SAMs coating을 하였을 때 56μN의 가장 높은 밀착력을 얻을 수 있었다.
6. SAMs coating에 의해 Si wafer와 Cu 도금층 사이의 밀착력의 증가는 micro contact printing(μCP)을
 이용하여 Si wafer위에 nanoscale의 선택적인 Cu도금
 에 적용이 가능하다고 판단된다.

참고문헌

[5] 이강무, “Si(100) 표면에서의 혼합 처리조립 단분자