가속 수명시험 데이터를 기반으로 하는 신뢰성 예측에 적합한 분포 함수 선택에 관한 연구

김지현¹, 박동규¹, 한현각²

A Study on Selection of Distribution Function for Reliability Prediction Using Accelerated Life Test Data

Ji-Hun Kim¹, Dong-Gue Park¹ and Hyun-kak Han²

요 약
신제품에 대한 개발 주기가 짧아지고 있는 현시점에서 제품의 수명을 예측하고 평가하기 위한 방법으로 가속 수명시험과 시험을 통해 관측된 고장 데이터의 분석에 대한 관심이 증대되고 있다. 이에 따라 가속 수명시험을 위한 시험 조건과 고장 데이터의 정확한 분석을 위한 고장 데이터의 최적 분포 결정 방법에 대한 관심 또한 증대되고 있다. 따라서 본 논문에서는 고장 데이터를 기반으로 신뢰성 예측을 할 때 사용하는 분포 함수 결정을 위한 방법으로 관측된 고장 데이터의 분포를 고려하는 Anderson-Darling 방법과 관측된 고장 데이터의 수명-스트레스 관계식을 적용하여 고장 데이터의 분포를 결정하는 Likelihood Function 방법을 비교한다. 두 가지 방법을 비교한 결과 각 방식에 의해 선택된 최적분포가 다르고, 따라서 각 방식에 의해 선택된 최적 분포에 의해서 예측되는 수명도 다를 수 있다.

Abstract
The study about Accelerated Life Test and analysis of failed data is increased in order to predict and evaluate reliability of products, according as the development cycle of products is reduced. Therefore, the decision of optimal distribution function about failed data for accurate analysis of failed data and test condition for Accelerated Life Test is very important. This paper compares Anderson-Darling method with Likelihood Function method for the decision of optimal distribution function about failed data. Anderson-Darling considers only failed data and Likelihood Function considers both failed data and life-stress relationship in decision of distribution function. In the results of comparison about two methods, we found that the distribution function chosen by each method is different and the life time predicted by each decided distribution function is different.

Key Words: 가속 수명시험(Accelerated Life Tests : ALT), Anderson-Darling, Likelihood Function

1. 서론

제품의 수명을 예측하고 제품의 특징을 파악하여 소비자원하는 제품을 생산하는 것은 제품에 대한 신뢰도를 높이는데 기여할 수 있는 기업의 중요한 목표다. 이러한 제품의 특성에 따라 제품에 대한 신뢰도를 높이는 것이 기업의 경쟁력을 높일 수 있는 기업의 중요한 목표다. 이러한 제품은 기업의 제품의 수명과 특성을 어떻게 예측하고 파악할 것인가에 대한 관심을 높이게 하였다. 신제품에 대한 개발 주기가 짧아지고 있는 현시점에서 제품을 평가하기 위한 방법으로 제품을 사용조건보다 가혹한 조건에서 시험, 빠른 시간에 제품의 수명과 특성을 파악할 수 있는 가속 수명시험(Accelerated Life Tests : ALT)에 대한 관심이 증대 되고 있다. 가속 수명시험은 크게 두 부분으로 구분된다. 첫째는 정확한 고장 데이터 관측을 위한 최적시험 설계이며, 두 번째는 관측된 고장 데이터의 해석이다. 정확한 데이터의 관측을 위해 최적시험 요건에 맞는 시험을 실시한 후 관측된 데이터의 정확한 분석을 위한 방법을 찾는 것은 가속 수명시험에서 매우 중요하다. 가속 수명시험을

¹순천향대학교 정보통신공학과
²순천향대학교 나노화학공학과
*교신저자: 김지현(zippykim@sch.ac.kr)
통해 관측된 고장 데이터의 정확한 분석을 위해 선행되어야 하는 최적 분포결정은 다양한 방법으로 이루어지고 있다. 본 논문에서는 관측된 가속수명 시험데이터[1]를 기반으로 Alta pro 분석도구를 사용하여 정확한 수명 예측 분석을 수행한다. 본 논문에서 사용하는 최적 분포 결정을 위한 방법은 기존의 방식인 Anderson-Darling과 달리 수평과 스트레스 관계식을 사용하는 Likelihood Function을 이용함으로써 기존의 방식보다 정확한 신뢰성 예측이 가능한 것으로 사료된다.

최적 분포결정 방법을 비교하기 위해 소형 계전기의 가속 수명시험을 통해 얻어진 고장 데이터[1]를 이용한 다.

2. 소형 계전기의 가속 수명시험 데이터

표 1. 시험 수준과 시료 수

<table>
<thead>
<tr>
<th>Stress 수준</th>
<th>시료 수</th>
<th>정상 사용 조건</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.6A</td>
<td>30</td>
<td>4.2A</td>
</tr>
<tr>
<td>16.8A</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>21.0A</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

[표 1]의 조건을 사용한 가속 수명시험을 통해 관측된 고장 데이터는 관측중단이 없는 완전데이터(completed data)로 수명-스트레스 관계식으로는 정합을 사용한 가속 수명시험에서 가장 많이 사용되는 Inverse Power 모형을 사용하였다.[1][2]

2.1 MINITAB의 Anderson-Darling 값을 사용한 최적 분포 결정

소형 계전기의 고장 데이터에 대한 최적 분포를 결정하기 위해 기존 논문[1]에서는 MINITAB를 사용하였고 분포의 적합성을 나타내는 적합도는 주어진 고장 데이터의 특성만을 고려하는 Anderson-Darling방법을 이용하였 다. 비교된 분포는 Weibull 분포, Lognormal 분포, Exponential 분포, Normal 분포이며, 각 분포에 Anderson-Darling방법을 적용한 결과 표 3과 같이 스트레스에 따른 Anderson-Darling 값이 0.534, 0.574, 0.752로서 가장 작은 값을 나타낸 Weibull 분포가 소형 계전기의 고장 데이터에 가장 적합한 분포로 판단되었다.

\[
S = \sum_{i=1}^{N} \frac{(2i-1)}{N} \left[\ln F(Y_i) + \ln(1 - F(Y_{N+1-i})) \right]
\]

(1)

Anderson-Darling 값을 사용한 분포 확인은 정규성에 대해 경향적 누적분포함수를 기초로 하며 위 수식 (1)에서 F 로 나타난다.[1][3]

표 3. Anderson-Darling값을 사용한 적합한 수명분포의 검포

<table>
<thead>
<tr>
<th>Stress</th>
<th>Weibull</th>
<th>Lognormal</th>
<th>Exponential</th>
<th>Normal</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.6A</td>
<td>0.534</td>
<td>0.729</td>
<td>1.290</td>
<td>1.026</td>
</tr>
<tr>
<td>16.8A</td>
<td>0.574</td>
<td>0.873</td>
<td>0.992</td>
<td>1.180</td>
</tr>
<tr>
<td>21.0A</td>
<td>0.752</td>
<td>0.826</td>
<td>2.033</td>
<td>1.619</td>
</tr>
</tbody>
</table>

表 2. 가속수명시험에서 자주 사용되는 수명-스트레스 모형

<table>
<thead>
<tr>
<th>모형 명</th>
<th>모형</th>
<th>스트레스</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arrhenius</td>
<td>(L(V) = A \cdot \exp \left(\frac{E}{kV} \right))</td>
<td>온도</td>
</tr>
<tr>
<td>Eyring</td>
<td>(L(V) = \frac{1}{V} \cdot \exp \left(-A \cdot \frac{E}{V} \right))</td>
<td>진동, 습도 등 바깥</td>
</tr>
<tr>
<td>Inverse Power</td>
<td>(L(V) = \frac{1}{KV})</td>
<td>진압</td>
</tr>
<tr>
<td>General Log-Linear</td>
<td>(L(X_1, \ldots, X_n) = \exp (a_1 + \sum a X_i))</td>
<td>각종 스트레스</td>
</tr>
</tbody>
</table>
2.2 ALTA PRO Likelihood Function 값을 사용한 최적 분포 결정

본 논문에서는 기존의 연구의 달리 소형 계획기의 고장 데이터에 대한 적합한 분포를 판단하는 방법으로 주어진 고장 데이터의 특성과 수명-스트레스 관계를 모두 고려한 Likelihood Function 사용하였다. 최적 분포를 구하기 위해 ALTA PRO를 사용하였으며 Weibull 분포, Exponential 분포, Lognormal 분포에 각각 식 (2)과 같은 Likelihood Function을 적용하였다.

Likelihood Function

\[L(x, \theta) = \binom{n}{x} \theta^x (1-P)^{n-x} \]

식 (2)의 Likelihood function을 적용하여 주어진 고장 데이터를 분석한 결과는 [표 4]와 같다.

<table>
<thead>
<tr>
<th>분포</th>
<th>Weibull</th>
<th>Exponential</th>
<th>Lognormal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Likelihood Function 값</td>
<td>-796.989941164801</td>
<td>-798.323974746188</td>
<td>-794.944641957004</td>
</tr>
</tbody>
</table>

3. Weibull 분포와 Lognormal 분포를 사용한 수명 예측

수명-스트레스관계를 고려하지 않은 MINITAB의 Anderson-Darling을 사용하는 방식에 의해 선택된 Weibull 분포와 수명-스트레스관계를 고려한 ALTA PRO의 Likelihood Function을 이용하여 선택된 Lognormal 분포를 적용하여 고장 데이터를 분석하여 소형 계획기의 평균 수명과 B10 수명을 구하였다.

Weibull 분포를 적용한 분석에서 정상 사용 조건 4.2A와 Confidence Level 95%의 정상 모수 \(\beta \)는 1.1431과 적도모수 \(\gamma \)는 2.0886E+9로 나타났으며, 이를 사용하여 표현된 Reliability와 Cycle의 관계 그래프는 [그림 1]과 같고, B10 Life는 2.9168E+8 Cycle, 평균수명은 1.9912E+9 Cycle로 [표 5]와 같이 확인되었다.

<table>
<thead>
<tr>
<th>구분</th>
<th>수명 예측</th>
<th>Weibull 분포를 적용한 수명 예측</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mean Life</td>
</tr>
<tr>
<td>Upper Limit</td>
<td></td>
<td>8.8967E+9</td>
</tr>
<tr>
<td>예측 값</td>
<td></td>
<td>1.9912E+9</td>
</tr>
<tr>
<td>Lower Limit</td>
<td></td>
<td>4.4567E+8</td>
</tr>
</tbody>
</table>

수명-스트레스관계를 고려한 Likelihood Function 값을 사용하여 선택된 Lognormal 분포를 적용한 분석에서 도 역시 Weibull 분포를 적용한 분석과 동일하게 정상 사

표 6. Lognormal 분포를 적용한 수명 예측

<table>
<thead>
<tr>
<th>구분</th>
<th>Lognormal 분포를 적용한 수명 예측</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean Life</td>
</tr>
<tr>
<td>Upper Limit</td>
<td>8.4466E+9</td>
</tr>
<tr>
<td>예측 값</td>
<td>2.2731E+9</td>
</tr>
<tr>
<td>Lower Limit</td>
<td>6.1125E+8</td>
</tr>
</tbody>
</table>

[표 7]은 Weibull 분포를 적용한 수명 예측과 Lognormal 분포를 적용한 수명 예측을 비교한 것으로 가속 수명시험을 통해 관측된 고장 데이터를 분석하고 이를 이용한 수명예측은 어떤 분포를 최적 분포로 결정하는가에 따라 그 예측 결과가 다르게 나타나는 것을 알 수 있다. 실제로 어떤 수명 예측이 더 정확한지는 현장에서FIELD 데이터를 수집하여 이것을 예측데이터와 비교해야만 정확하게 증명할 수 있지만, 이 문제는 실제 FIELD 데이터가 수집되는 시점에서 판단될 것으로 사료된다. 다만 본 논문에서는 이와 같이 고장 데이터의 분석에서 최적 분포의 결정이 신뢰성 예측 시 매우 중요한 변수로 작용할 수 있다는 것을 알 수 있었다.[7][8]

4. 결론

본 논문에서는 소형 재전기의 신뢰성 예측을 위하여 가속 수명시험을 통해 관측된 고장 데이터와 분석을 위한 최적 분포 결정 방법으로 Anderson-Darling 방법과 Likelihood Function 방법을 비교 검토하였다.

소형 재전기의 동일한 고장 데이터를 이용한 최적 분포 결정에서 수명-스트레스관계를 고려하지 않은 Anderson-Darling 방법은 Weibull 분포를 최적 분포로 결정하였으며, 수명-스트레스관계를 고려한 Likelihood Function 방법은 Lognormal 분포를 최적 분포로 결정하였다.

각각 서로 다른 분포를 이용한 수명예측은 서로 다르게 나타날 수 있었으며, 따라서 고장 데이터의 분석
가속 수명시험 데이터를 기반으로 하는 신뢰성 예측에 적합한 분포 함수 선택에 관한 연구

이현우, 신뢰성 시험, 한국신뢰성기술서비스, 2005
[7] D.N.Prabhakar Murthy, Min Xie and Renyan Jiang, Weibull Models, WILEY

참고문헌

[1] 권영일, 유영철, 소형 계전기에 대한 가속수명시험 설계 분석, 한국신뢰성학회지, 제4권1호, pp.1-14, 2004

한현각 (Hyun-kak Han)

• 1985.8 고려대학교 일반대학원 화학공학과 졸업(석사학위 취득)
• 1990.8 고려대학교 일반대학원 화학공학과 졸업(박사학위 취득)
• 1993.3 순천향대학교 공과대학 화학공학부 교수

김지현 (Ji-Hun Kim)

• 2005년 2월 : 순천향대학교 정보기술공학부 (공학사)
• 2005년 3월 ~ 현재 : 순천향대학교 정보통신공학과 식사 재학

박동규 (Dong-Gue Park)

• 1992년 한양대학교대학원 전자공학과 공학박사
• 1999년 ~ 2003년 순천향대학교 정보기술공학부 부교수
• 2004년 ~ 현재 순천향대학교 정보기술공학부 교수

<관심분야>
접근제어, 보안