The Evaluation of the Structural Integrity of Bellows Globe Valve for Nuclear Power Plant

Chul-Sup Chung

Abstract The purpose of this paper is to evaluate the structural integrity of the Class 1500 Bellows Seal 3 inch globe valve classified as seismic category IIA. The finite element analysis program, ANSYS, Version 10.0, is used to perform both a modal frequency analysis and an equivalent static stress analysis of the subject valve modeling. The modal frequency analysis results show the fundamental natural frequency is greater than 33 Hz. Therefore the equivalent static stress analysis is performed using the seismic acceleration values. The stresses resulted from various loadings and their combinations are evaluated based on the structural acceptance criteria of the ASME Code. The stresses in the globe valve due to the seismic loadings are within the allowable limits. It is concluded that the globe valve structure is maintaining the structural integrity for the seismic loading conditions.

Key words: globe valve, stress analysis, modal frequency analysis, ASME Code, FEA

1. 서 론

2002년 7월 23일 중국 무단장 남동쪽 약 115 Km 지역에 (위도 43.8°, 경도 130.7°) 리히터 규모 7.2의 강진이 발생하여 수천 명이 사망하고 많은 건물과 사회 기반시설이 파괴되는 지진재난이 발생하였고, 2005 년 8월 16일 일본 미야기지(宮城) 현 앞바다에서도 리히터 규모 7.2의 지진이 발생하는 등 우리나라 주변에서 지진 발생이 반복하게 일어나고 있는 실정이다. 이에 따라 우리나라는 과연 지진으로부터 안정환지에 관심이 높아지고 있다. 기상청 자료에 따르면 우리나라의 1년에 19번 가량 지진이 발생하고 있으며 사망이 목 질 수 있는 리히터 규모 3.0 이상은 연평균 9번이다. 몇 년 전부터 학계 일부에서 정상도 일대에 활성화증이 분포하고 있다는 주장이 제기되며 “우리나라도 지진의 피해로부터 안전하지 않다”는 우려가 나오고 있다. 1997년 6월 경주부근에서 일어난 규모 4.3의 지진이 양산단층의 영향 때문이었으며, 다행히 이 지역은 원자력 발전소와 포항, 울산지역 공업단지로 미치고 있어 대규모 지진이 일어날 경우 가공할 만한 피해가 우려된다. 최근 우리나라에서 원자력 발전의 의존도가 증가하는 만큼 원자력 발전소의 안전성에 대한 국민 적 관심도 비례적으로 증대되고 있으므로 안전성은 확보하기 위해 원자력 관련 기기에 대하여 지진해중에 대한 구조 건전성을 확인하는 것이 중요하다. 한편, 원자력 발전소의 성실과 기기는 지진과 같은 자연재해로부터 보호되고, 가상적 사고조건에서도 구조적 안전성을 유지하고 동시에 안전관련 기능을 충분히 수행할 수 있도록 법적적으로 요구된다. 원자력 발전소에서 발생해
본 논문에서는 글로브 밸브 구조물의 경전성을 검토하기 위해 밸브를 3차원 모델러인 솔리드 워크스(Solid Works) 2005를 이용하여 설계에 가깝게 그림 1과 같이 모델링하여 유한요소 해석 프로그램인 ANSYS를 이용하여 모달 해석을 통해 강진한 구조물임을 확인한 후 2가지 경우의 지진하중에 대한 정적 해석을 수행하여 밸브 구조물중 위험단면에서의 맥 응력과 구심 응력을 구하여 각 하중조건에 대해 코드에서 규정하고 있는 해중값과 비교하여 글로브 밸브 구조물의 구조적 경전성을 평가하였다. 본 논문에서는 지진하중에 대한 밸브 구조물에 대한 정적 응력해석과 각 지진방향에 대한 응력을 조합하여 코드 요건에 따라 경전성을 평가하였다. 하중조건은 설계조건에 따르며 해석에 사용된 밸브 구조물은 작동 유체와 동일한 설계온도(38°C)를 사용하여, 압력 조건으로는 설계압력(18.8 MPa)을 사용하였다.

그림 2. 밸브의 지수

2. 밸브 내진해석

2.1 해석모델

해석하려는 브로우즈 글로브밸브는 ASME 내진등급 II A 밸브이며, 압력경계 기기(pressure boundary component)인 밸브 본체, 밸브 본넷(valve bonnet), 밸브 본체 및 본넷 채결 볼트와 주요 기기인 밸브 스템(stem)과 밸브 디스크(disc)로 구성되어 있다. 밸브의 설계 온도 및 압력은 38℃, 18.86 MPa 이며, 운전 토크는 845 Nm 이며 냉각재가 포함된 밸브의 질량은 79 Kg이다. 밸브 구조물 구성품에 대한 재질, 재료상수 및 각 재질에 대한 하용응력은 표 1과 같다. [표] 밸브 구조물을 나타내기 위하여 3-D 구조물 유한요소인 "SOLID 185" 와 8 절점 변형 면 접촉 요소인 "CONTACT 174"를 사용하였으며 절점수 및 유한요소 모델의 전체 질량은 81.97 Kg로서 실제 밸브 구조물의 질량과 오차 범위 내에서 일치하므로 유한요소 모델은 모달 해석 및 정적 구조 해석에 적합하다고 판단할 수 있다. 밸브 구조물에 대한 유한요소 모델은 그림 3과 같다.
표 1. 밸브 구조물의 재료 상수 및 허용 응력

<table>
<thead>
<tr>
<th>Part</th>
<th>Material</th>
<th>E (GPa)</th>
<th>ν</th>
<th>Allowable stress (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BODY, BONNET</td>
<td>A182-F22</td>
<td>210</td>
<td>0.3</td>
<td>103</td>
</tr>
<tr>
<td>GLAND Flange</td>
<td>A105</td>
<td>203</td>
<td>0.3</td>
<td>121</td>
</tr>
<tr>
<td>STEM</td>
<td>A564-TP630</td>
<td>200</td>
<td>0.3</td>
<td>232</td>
</tr>
<tr>
<td>GLAND</td>
<td>A276-316</td>
<td>200</td>
<td>0.3</td>
<td>121</td>
</tr>
<tr>
<td>WEDGE (DISC)</td>
<td>A217 CA15</td>
<td>200</td>
<td>0.3</td>
<td>155</td>
</tr>
<tr>
<td>BONNET BOLT</td>
<td>A193 B7</td>
<td>200</td>
<td>0.3</td>
<td>172</td>
</tr>
</tbody>
</table>

정하였고, 밸브 본체와 본넷과는 접촉 상태, 본넷과 스탬은 미끄럼이 허용되는 접촉 경계조건을 사용하였고. 각각모음을 방지하기 위해 밸브 본체의 입구 쪽 (inlet)은 모든 변위변위 및 회전변위가 가속되는 엘리너 (anchor)로 하였고, 출구 쪽(outlet)은 모든 변위변위 및 회전변위가 허용되는 자유단으로 하였다. 경계조건이 표시된 밸브 구조물 해석 모델은 그림 4와 같다.

2.3 모달해석 (Modal Analysis)
모달해석은 선형 탄성 구조물의 고유진동수와 모드형상을 계산하는데 사용된다. 단순하고 양자만 영향을 미치는 자유진동에 대해 진동방정식은 (1)와 같다.

\[[M] \{u\} + [K] \{u\} = \{0\} \] \hspace{1cm} (1)

여기서, \([M],[K]\)는 각각 질량 행렬 및 감성 행렬이며, \(\{u\}\)는 변위 벡터이다. (617)
선형 구조물에 대하여 변위 벡터가 아래 식(2)와 같은 조화함수라고 가정하고,

\[\{u\} = \{u_0\} \cos(\omega t - \phi) \] \hspace{1cm} (2)

지배방정식 (1)에 대입하면 행렬 형태의 고유치 방정식 (3)을 얻는다.

\[([K] - \omega^2 [M]) \{u_0\} = \{0\} \] \hspace{1cm} (3)

행(0) 벡터가 아닌 해를 얻으려면 계수행렬의 행렬식이 0이 되어야하므로 \(n\)차의 다항식 (4)을 얻는다. 따라서 고유치 계산은 \(n\)차 다항식을 반복법을 사용하여 구한다.

\[|[K] - \omega^2 [M]| = 0 \] \hspace{1cm} (4)

본 해석에서는 처음 5개의 고유치만 구한 것이며 그 결과는 표 2와 같다. 모달해석에 의해 산정된 밸브 구조물의 기본 고유진동수는 112 Hz이며, 이는 강진한 (rigid) 범위의 하한 값인 33 Hz를 초과하여 밸브 구조물의 강진한 (rigid) 기기로 분류할 수 있어 진동중에 대해 적절한 응력 해석이 가능하다. 1차 모드는 beam 모드이며 2차 모드에서는 엘 모드가 나타난다. 모드에 대한 모드형상은 그림 5-8과 같다.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Frequency Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>112</td>
</tr>
<tr>
<td>2</td>
<td>117</td>
</tr>
<tr>
<td>3</td>
<td>421</td>
</tr>
<tr>
<td>4</td>
<td>537</td>
</tr>
<tr>
<td>5</td>
<td>578</td>
</tr>
</tbody>
</table>

그림 3. 글로브 밸브의 해석 모델

그림 4. 해석 모델의 경계조건

2.2 경계조건
해석을 효율적으로 수행하기 위해 각 부품간 상태를 단순화 시켰다. 스탬과 디스크는 일체 부품으로 가

1036
원자력 발전소용 브로우즈 글로브 브레치에 대한 구조 건전성 평가

그림 5. 1차 모드 형상

그림 6. 2차 모드 형상

그림 7. 3차 모드 형상

그림 8. 4차 모드 형상

2.4 등가 정적 응력해석
(Equivalent Static Stress Analysis)
설계조건으로 표시되는 설계 가중에 따라 반응하는 구조물의 동적 응답을 구하기 위해 내진 해석이 사용
된다. 구하려는 응답은 변위, 응력, 하중 및 모멘트이
d. 이들 지진하중에 의한 응력은 지속하중에 의한 응
력과 조합되며 허용응력과 비교한다.

등가 정적 응력해석은 비교적 간단한 구조물에 지
진하중이 작용하며, 고유진동 해석에서 구성 기본 고
유 진동수가 33 Hz 이상인 경우 구조 건전성을 평가
하는데 사용한다. 본 해석에서는 지진하중이 수평방향
으로 6.6 g, 수직방향으로 7.6 g의 가속도로 전 브레치
구조물에 작용한다고 가정하였다. 표 3은 각 운
전조건에 적용하는 지진하중을 가속도 g의 배수로 표
현하였다. 여기서 SSE는 발생확률이 매우 작은 안정
정지진(Finite Shutdown Earthquake)을 나타내며,
E-W, N-S는 수평방향, V-S는 수직 방향을 나타낸다.
등가응력으로 식 (5)로 표현되는 미세스(Von Mises)
응력을 사용하여 허용응력과 비교하게 된다.

\[
\sigma_{eq} = \frac{1}{\sqrt{2}} \sqrt{(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2}
\] (5)

여기서 \(\sigma_1\), \(\sigma_2\) 및 \(\sigma_3\) 은 주응력이다. 각 운전 조건
에 따른 표 4와 같은 하중조건에 대한 정적 응력 해
석 결과로부터 얻은 각 부품별 등가 응력은 표 5와
같다. 각 부품에서 발생하는 최대 등가응력이 허용응
력 이하에 있음을 알 수 있다. 여기서 운전하중
(Operating Load)은 운전 토크 845 Nm 이며 지진하중
은 운전 조건에 따른 표 3의 가속도 값(g)을 사용하였다.
표 3. 지진하중 (g-level)

<table>
<thead>
<tr>
<th>Operating Condition</th>
<th>Direction</th>
<th>Applied g Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>E-W</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>V-S</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>N-S</td>
<td>0</td>
</tr>
<tr>
<td>SSE</td>
<td>E-W</td>
<td>6.6</td>
</tr>
<tr>
<td></td>
<td>V-S</td>
<td>1+6.6</td>
</tr>
<tr>
<td></td>
<td>N-S</td>
<td>6.6</td>
</tr>
</tbody>
</table>

표 4. 하중조합

<table>
<thead>
<tr>
<th>Operating Condition</th>
<th>Load Combination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>Weight+(1.0×Pressure)+ Operating Load</td>
</tr>
<tr>
<td>SSE</td>
<td>Weight+(1.1×Pressure)+ Operating Load+ Seismic Load</td>
</tr>
</tbody>
</table>

표 5. 범브 부품별 최대 등가 응력

<table>
<thead>
<tr>
<th>Operating Condition</th>
<th>Item</th>
<th>Von Mises Stress(MPa)</th>
<th>Allowable Stress Limit(MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>Body</td>
<td>100.9</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>Bonnet</td>
<td>37.2</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>Valve Stem</td>
<td>91.3</td>
<td>232</td>
</tr>
<tr>
<td></td>
<td>Disc</td>
<td>90.9</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>Bolt</td>
<td>3.6</td>
<td>172</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>99.9</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>Bonnet</td>
<td>36.9</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>Valve Stem</td>
<td>94.0</td>
<td>232</td>
</tr>
<tr>
<td></td>
<td>Disc</td>
<td>95.3</td>
<td>152</td>
</tr>
<tr>
<td></td>
<td>Bolt</td>
<td>5.3</td>
<td>172</td>
</tr>
</tbody>
</table>

4. 건전성 평가결과

범브 구조물에 대한 응력해석을 수행하여 원자력 규격에서 제시한 허용응력 값과 비교한 결과 응력 수준이 모두 허용응력 이내에서 만족하고 있으므로 각 운전조건 및 지진하중에 대하여 충분히 구조적으로 건전성이 유지됨을 알 수 있으며, 결과는 표 5와 같다. 정상 지진조건 및 안전경지 지진조건에서 최대 응력이 발생하는 부위는 범브 본체 이었으며, 미세스 응력 값은 각각 100.9 MPa, 99.9 MPa 이었다. 허용 값은 103 MPa 이므로 허용값 이내에 있음을 알 수 있다. 보수적인 설계를 위해 안전 경지지진조건에서의 허용값은 정상조건의 허용값과 동일하게 사용하였다. 각 운전조건에 대한 등가응력 등고선은 그림 9, 10과 같다.

3. 건전성 평가기준

구조물에 대한 응력해석의 목적인 설계요건, 설계 보고서 및 설계 명세서에 기술된 하중조건에 의해 범브 구조물이 과응력(overstressed)상태에 도달하지 않음을 보여주는 데 있다. 이러한 목적은 ASME ND 3500 요건에 따라 표 4와 같은 하중조합에 대하여 구한 등가응력이 허용 값 이내에 있음을 임중해야 한다. 범브 구조물을 강건한 (rigid) 기로 분류할 수 있어 지진 하중에 대해 정적 해석이 가능하려면 구조물의 기본 고유 진동수가 33 Hz를 초과해야 한다.

그림 9. 정상조건에서의 응력 등고선

그림 10. 안전경지지진 조건에서의 응력 등고선
5. 결론

본 연구에서는 볼로즈 글로브밸브 구조물에 대하여 모달해석 및 응력해석을 수행하고 이를 바탕으로 원자력 규격 설계요건인 ASME ND-3500에 따른 기준을 적용하여 진진화중에 대한 구조건전성 평가를 하였다.

(1) 모달해석에 의해 산정된 밸브 구조물의 기본 고유주파수는 112 Hz이며, 이는 강건한(rigid) 범위의 하한 값인 33 Hz를 초과하므로 밸브 구조물은 강건한 기로 분류할 수 있어 진진 하중에 대해 등가 정적 응력해석이 가능하였다.

(2) 진진하중에 의하여 밸브 구조물에 발생하는 응력 수준은 코드에 규정한 허용값 이내에 있으므로 구조적 건전성을 유지할 수 있다고 평가할 수 있다.

(3) 유한요소법을 바탕으로 원자력 규격에 따른 기준을 정립하였다. 이러한 해석 및 기준은 진진 하중을 받는 원자력 부품 에 대하여 구조 건전성을 평가할 수 있으므로 내진시험을 대체할 수 있는 수단으로 사용이 가능하다.

참고문헌

정철섭(Chul-Sup Chung) [정회원]

- 1980년 2월 : 서울대학교 기계설계공학과 (공학사)
- 1986년 6월 : 부이지애나 주립대학교 기계공학과 (공학석사)
- 1990년 6월 : 노스캐놀라이나 주립대학교 기계공학과 (공학박사)
- 1990년 10월 ~ 1995년 2월 : 한국원자력연구소 선임연구원
- 1995년 3월 ~ 현재 : 건양대학교 기계공학과 교수

<관심분야>
모델링&시뮬레이션, 기계설계, 전산해석학, 구조해석