자동차 암에 있어서의 피로 변형의 시뮬레이션 해석에 관한 연구
조재웅1, 한문식2

A Study on Simulation Analysis of Fatigue Deformation at Automotive Arm
Jae-Ung Cho1 and Moon-Sik Han2

요약 본 연구를 통하여 피로를 받는 자동차 세시 부분의 암에 대한 안전성과 내구성을 예측할 수 있다. 하중의 변화는 하중의 진폭을 평균 하중으로 나눈 값으로서 하중의 변화가 0.5부터 0.75에서는 급격하게 피로 수명이 감소되나 0.75이상부터 1.5까지는 그 수명이 원만하게 변화된다. 이러한 결과들에 의하여 하중의 변화에 대한 피로 수명의 영향을 예측할 수 있다. 또한 집중 하중을 받는 로드 엔드의 연결 부분에서 최대의 손상값이 2.2를 보이고 있어 이 연결 부분에서 피나의 가능성이 가장 큼을 보이고 있다. 또한 이 부분에서는 \(-6.93 \times 10^3\)의 압축 변형으로서 최대의 압축 응력이 349 Mpa이 되어 압축으로 인하여 피로 뿐 가로성이 큼을 알 수 있다.

Abstract The safety and the durability of the arm as an automotive chassis part under the fatigue can be predicted in this study. The fatigue life is sharply decreased from 0.5 to 0.75 at the change of load which is the amplitude load divided by average load. But its life is slightly decreased at the change of load from 0.75 to 1.5. The influence of fatigue life according to the change of load can be predicted by these results. As the value of maximum damage is 2.2 and the value of maximum compressive strain or stress is \(-6.93 \times 10^3\) or 349 Mpa at the connected part of rod end applied by concentrated load respectively, there is the greatest possibility of destruction due to the compression at this part.

Key Words : safety, durability, arm, automotive chassis part, change of load, fatigue life, fatigue damage, fatigue strain

1. 서론

일반적으로 강도성에 있어서 충분한 하용응력으로 설계된 기계를 할지라도 의외로 부합응력보다 두릅 낮은 응력 하에서도 피로가 잘 일어난다. 따라서 이를 규명하기 위한 여러 가지 연구가 평범하게 이루어져 있으 며 이들에 대하여는 피로나 충돌 파괴를 이용한 여러 가지 연구가 발표되고 있다[1]. 또한 자동차 차체나 내구에 있어서 피로를 규명하기 위해서 피로 크랙 및 최적화 설계 등의 연구가 활발히 진행되고 있다[2-4]. 특히 대부분의 피로 파괴는 불규칙적으로 일어나고 있어 이로 하여 해석에 의하지 않고서는 그 예측이 불가능한 실정이다. 본 연구에서는 다른 피로 해석 소프트웨어에 비하여 정확하고 효율적인 해석 결과를 얻어 낼 수 있고 피로수명의 해석 결과들에 대하여 수반성이 좋은 Ansys workbench 프로그램을 사용하였다[5,6]. 본 연구에서는 자동차의 현가장치 중 암 피로에 의한 변형을 반복적으로 시뮬레이션 을 하였고 그 재료의 안전성과 수명 관계를 해석하였다. 그 연구 내용으로서는 피로를 받는 암의 모든 부분에 대하여 그 수명과 손상들을 예측할 수 있었고 하중의 변화에 따른 피로 수명의 영향을 해석 할 수 있었다. 또한 이러한 수명 및 손상 예측력을 이용하여 어떠한 작은 응력의 미소한 사이클들이라도 그 재료에 대한 영향을 알 아 낼 수 있었다. 이러한 본 연구의 결과를 종합하여 자동차 현가장치 부품에 응용한다면 그 파손 방지 및 내구성을 예측하는데 활용이 될 것으로 사료된다.

1공주대학교 기계·자동차공학부
2계명대학교 기계·자동차공학부
3교신저자: 조재웅(juche@kongju.ac.kr)

427
2. 모델 및 해석

2.1 유한 요소 모델

본 연구에서의 해석모델의 유한요소분할 모양과 치수는 그림 1 및 2와 같다.

![그림 1. 모델의 유한 요소 분할](image1)

![그림 2. 모델의 치수 (단위: mm)](image2)

모델의 절점 및 요소들의 개수는 각각 12054 및 7592이며 시험관의 재료는 구조용 강으로서 그 특성은 표 1에 나타나 있다[7]. 본 연구에 있어서는 변형율 및 수명 방법이 시뮬레이션의 목적으로 모델로 수행되는데 이러한 재료의 매개 변수들은 표 2와 같이 무한 수명 값을 10^6 사이클로 정하고 있다. 더 높은 수치로 정하더라도 상대적으로 동력 사이클들이 작게 되어 손상의 가능성을 더 적게 할 수 있다.

<table>
<thead>
<tr>
<th>표 1. 모델의 물성치</th>
</tr>
</thead>
<tbody>
<tr>
<td>Young's Modulus</td>
</tr>
<tr>
<td>Poisson's Ratio</td>
</tr>
<tr>
<td>Mass Density</td>
</tr>
<tr>
<td>Tensile Yield</td>
</tr>
<tr>
<td>Compressive Yield</td>
</tr>
<tr>
<td>Tensile Ultimate</td>
</tr>
</tbody>
</table>

또한 구속 조건으로서는 그림 3과 같이 Main Frame와 Lower Arm을 연결시키는 Bracket과 결합이 이루어지는 부분에 실린더 같은 지지조건으로서 구속된다. 하중의 적용은 타이어에서 가해지는 힘을 가장 많이 받는 로드 렌드의 연결 부분과 겹쳐져 있는 부분에 집중하므로 10000 N을 적용한다.

![그림 3. 모델의 구속 조건들](image3)

![그림 4. 하중 내력](image4)
변형율-수명의 방법은 소성효과를 고려하여 전체변형
진폭(ε₀) 및 수명(Νf)과 관련된 방정식은 (1) 식과 같다.

\[ε = \frac{ε₀}{B} (2\pi f)^k + ε f (2\pi f)^c \quad (1) \]

여기서

\(σ_f \) 는 응력 제수
\(b \)는 응력 지수
\(ε_f \) 는 내구성 제수
\(c \)는 내구성 지수이다.

피로 하중은 천천히 진행되지만 구조를 자세히 변형을 반복되며 저자이름 하여도 파괴되며 현상을 극복하
였다. 그림 4와 같은 하중 역동으로서 본 해석에 있어서
는 시간에 따라 변동하는 균일 진폭하중의 방법을 택하
고 기본 하중에 대하여는 그 배율을 적용할 수 있다. 이
배율은 10이고 하중이 시간에 따라 변동하게 된다.

2.2 해석 결과

피로에 대한 해석 결과의 결과들은 피로 수명, 파손 및
하중의 변화에 따른 피로 수명의 영향을 포함하고 있다.
본 연구의 모델에 대하여 사용 가능 수명에 대한 동고선
그림은 그림 5에 나타나 있다. 변형진폭의 하중으로 본
모델의 작용됨에 따라 부분이 파괴될 때까지의 하중의 기
간에 대해서는 물리적 수돌로 나타내 준다. 따라서 주어진
하중의 내력이 한 단 간의 하중을 표현하고 그 수명이
100으로 된다면, 예측되는 모델의 수명은 100개월이 된
다. 그림 5에서 보면 약 3파리 중간 부분에서 최대의 수
명, 10을 나타내어 안정성이 가장 좋은 것을 알 수 있다. 반
면 짧은 하중을 가장 많이 받는 로드 엔드의 연결 부분에
서 최소의 수명, 4.55 × 10⁶을 보이고 있어 그 수명이 가
장 높아져서 안정성이 나타남을 알 수 있다.

그림 6은 평균 하중에 대한 전체변형량을 보이고 있다.
실험치 지하부분에는 거의 변형이 없다고 하였으나 하중을
가장 많이 받는 로드 엔드의 연결 부분에서 변형량이
4,806 mm나 됨을 알 수 있다. 따라서 이 연결 부분에서
파턴의 가능성이 가장 큼을 보이고 있다. 그림 7에서는
동고선으로 된 피로 수상을 나타내는데 수상은 사용
가능 수평으로 나누어진 설계 수평으로 정의되게 하고 설
계 수평은 10³으로 정하고 있다. 역시 압의 다리 중간 부
분에서 최소의 수상인 0.0004을 나타내어 수상의 가능성이
최대하고 안정성이 가장 좋은 것을 알 수 있다. 반면 짧
중 하중을 가장 많이 받는 로드 엔드의 연결 부분에서 최
대의 수상인 2.2를 보이고 있어 수상의 위험성이 가장 많
아져 그 안정성이 가장 나빠짐을 알 수 있다.

그림 5. 사용 수명의 동고선

그림 6. 전변형량의 동고선

그림 7. 피로 수상의 동고선

그림 8은 하중의 변화에 대하여 유용 가능한 피로 수
명을 나타낸 것이다. 하중의 변화는 하중의 진폭을 평균
하중으로 나온 값이다. 하중의 변화가 0.5 일때는 5.54 x 10^8 인데, 0.75에서 10^6이 되어 급격하게 그 수명이 감소 된다. 0.75이상부터 1.5까지는 그 수명이 완만하게 변화 된다. 1.5일 때는 5.53 x 10^5이 되어서 그 피로 수명이 완만하게 변환되어 하중의 변화에 대한 피로 수명의 변화가 완만하다. 따라서 이 범위에서는 하중의 변화에 대한 피로 수명의 영향이 그려 크게 없음을 알 수 있다.

대의 압축 응력이 349 MPa가 된다. 또한 -5 x 10^7 및 -3 x 10^7의 변환율에서 응력은 다시 0이 됨을 알 수 있고 -2 x 10^7의 변환율에서는 최대의 인장응력 162 MPa가 된다.

따라서 이 집중 하중을 받는 이 부분에서는 압축응력 이 훨씬 더 많이 작용되어 압축으로 인하여 파단될 가능 성이 높을 수 있다.

3. 결 론

본 연구를 통하여 작정이 27.2mm이고 폭과 길이가 각각 242.80mm 및 380mm인 차량의 주행안전성에 큰 역할을 하는 하duto를 앞으로 서서 작동자의 병장장치 부분에 대한 안전성과 내구성을 예측할 수 있었는데, 이러한 결과들을 이용하여 얻은 주요한 결론은 다음과 같다.

(1) 하중의 집중을 평균 하중으로 나눈 값으로서의 하중의 변화가 0.5부터 0.75에서의 피로 수명이 급격하게 감소한다. 그러나 하중의 변화가 0.75이상부터 1.5까지는 그 수명이 완만하게 변환된다. 이러한 결과들은 하중의 변화에 대한 피로 수명의 영향을 예측할 수 있다.

(2) 집중 하중을 받는 로드 엔드의 연결 부분에서 최대의 손상은 2.2를 보이고 있고 변형량도 4.806mm나 됨을 알 수 있다. 따라서 이 연결 부분에서 파단의 가능성이 가장 큼을 보이고 있다.

(3) 로드 엔드의 연결부에서는 -6.93 x 10^7의 변형율로서 최대의 압축 응력이 349 Mpa가 된다. 이 부분에서는 압축응력이 훨씬 더 많이 작용되어 압축으로 인하여 파단될 가능성이 높을 수 있다.

참고문헌

조재웅 (Jae-Ung Cho)

• 1980년 2월 : 인하대학교 기계공학과 (공학사)
• 1982년 2월 : 인하대학교 기계공학과 (공학석사)
• 1986년 8월 : 인하대학교 기계공학과 (공학박사)
• 1988년 3월 ~ 현재 : 공주대학교 기계자동차공학부 교수

한문식 (Moon-Sik Han)

• 1979년 2월 : 인하대학교 기계공학과 (공학사)
• 1981년 2월 : 인하대학교 기계공학과 (공학석사)
• 1986년 2월 : 인하대학교 기계공학과 (공학박사)
• 1997년 3월 ~ 현재 : 계명대학교 기계자동차공학부 교수
• 2006년 8월 ~ 현재 : 계명대학교 산학협력단 단장

<관심분야>
기계 및 자동차 부품 설계 및 내구성 평가, 파로 또는 충돌시 동적 해석

<관심분야>
파로, 파리 및 강도평가, 구조 및 재료 강도해석, 차체/구조 내구설계 및 재료 기술