청소년기 연령에 따른 뉴로피드백 훈련의 효과 연구

변윤언
1경기대학교 청소년학과

The Effect of Neurofeedback Training on Age differences groups in Adolescence

Youn-Eon Byun
1Dept. of Youth Science, Kyonggi University

요 약 본 연구는 뉴로피드백 훈련이 청소년기 초-중-고의 학교급별 연령에 따라 그 효과가 어떻게 나타나는지를 검증할 목적으로 이루어졌다. 경기도에 거주하는 청소년 90명 가운데 실험군 45명, 비교군 45명을 대상으로 실험하였다. 기간은 2009년 11월부터 2010년 3월까지, 20~25회의 뉴로피드백 훈련을 주2~3회, 매회 20~50분씩 받도록 하였다. 훈련 전후의 데이터는 SPSS 12.0으로 통계처리 하였고, 연구목적에 맞게 t-test로 연령에 따라 실험군과 비교군의 집단 간 효과 차이를 검증하였다. 연구결과, 뉴로피드백 훈련의 효과가 연령에 따라 뇌발달 특성을 반영하고 있었음을 확인하였으며, 뇌기능의 향상은 중학교급에서 가장 효과가 높았다. 청소년기의 학습에 영향을 주는 주의지수, 활성지수, 항스레스지수에서 유의미한 효과를 확인할 수 있었다.

Abstract The purpose of this study was to verify the effect of Neurofeedback training on adolescence groups that are different in Age. The experiment was carried out with 90 students who living in Kyonggi-do. From Nov. 2009 to Mar. 2010, each were under training about 20-25 times, 2-3 times a week, during 20 to 50 minutes, was conducted by limiting training. Statistical data collected were processed with the SPSS 12.0. For the purposes of t-test showed that differences in the effects of age. The result, the effects of Neurofeedback training on age difference groups were reflected characteristics of brain's development in adolescence. The most effective showed in middle school students. Also, Significant effects of Neurofeedback training that were confirmed in attention quotient, Activation quotient, Stress resistance quotient.

Key Words : Neurofeedback training, Different in age, Attention quotient, Activation quotient, Stress resistance quotient, Emotion quotient.

1. 서론

1.1 연구목적

청소년기 연령범주를 어떻게 볼 것인가에 대해 여전히 학자마다 의견이 다르며 국가마다 정하는 바가 크게 다르다. 한국사회에서 대중적으로 인식하는 청소년기는 만 13세~18세정도이며 청소년기본법에서 정하는 법률적 범주는 9세~24세에 해당한다. 이 기간의 청소년들은 연령에 따라 신체적인 차이도 두드러지게 나타난다. 초등학교 6학년인 13세의 청소년은 아동에 가깝지만 고등학교 2학년인 18세의 청소년은 성인에 가깝다. 초등학생에서 중학생으로, 다시 고등학생으로 학교급이 바뀔 때마다 청소년의 경험은 다르다. 뇌과학에서는 청소년기의 변화를 뇌 속에서 작업하는 결과라고 설명하고 있는데 이러한 유전적인 요소와 환경적인 요소에 의해 변화와 작용을 거듭하며 성인으로의 이행을 준비하고 있다. 최근 뇌과학자들은 청소년의 뇌를 임상적으로 스캔하면서 연령에 따라 나타나는 뇌의 변화를 하나둘 보고하고 있는 수세에 있다.

이 연구는 ‘청소년기’라고 부르는 코호트(Cohort) 안에서 서로 다른 청소년기를 살아가는 초중고 청소년을 뇌과학적 측면에서 이해하려는 목적으로 이루어졌다. 뇌의...
전기신호인 뇌파(EEG)를 통해 연령에 따른 청소년기 뇌의 특성을 살펴보고 연령에 따라 뉴로피드백 훈련의 효과가 어떻게 나타나는지 알아보고자 한다.

1.2 이론적 배경

성인들은 인간의 복잡한 감정을 이해하려고 할 때, 또 복잡한 의사소통의 뉴런을 이해하려고 할 때 전두엽을 사용한다. 그러나 두려움이라는 중요한 신호를 보여주었을 때 fMRI에 나타난 청소년들의 뇌에서는 전두엽이 아닌, 편두핵(amygdala)에서 반응을 보였으며 감정을 처리할 때도 두려움을 분노라는 감정으로 표현하는 경우가 많아 있었고 상대의 표정을 잘못 읽고 혼란에 빠지는 경우도 있다[5]. 이에 대해 사춘기가 시작되는 만 11~12세가 되면 감정 파악의 속도가 20%정도 떨어지며 18세가 되어야 정상수준을 회복하는데 이는 청소년기의 뇌에서 리모델링이 일어나는 동안 전두엽 회로가 상대적으로 비효율적으로 변한다는 것을 발견하였다[6]. 이러한 발견은 청소년기의 뇌가 성인의 뇌와는 다르게 세기를 바라보고 반응할 가능성을 통해서도 시사하고 있다.

Cabeza(2002)의 연구에서 성인 가운데서도 나이가 들어갈수록 우수한 두뇌 수행력을 보이는 집단에서 전두엽 대뇌피질의 활동이 대칭적으로 나타난다고 보고하였다[7]. 이것은 과정을 수행하는 과정에서 초기청소년들과 후기청소년들이 가운데 좌우뇌 대칭성과 동시성을 활용하는 정도가 후기청소년들에게서 높은 평균을 보인다고 할 수 있음을 기대할 수 있다. 연령이 높아질수록 인지적인 과정을 수행할 때 뇌의 비대칭성이 감소하기 때문에 후기청소년으로 갈수록 균형이 더 좋아질 수 있기 때문이다.

2. 연구방법

2.1 연구설계

뉴로피드백 훈련의 연령에 따른 효과성을 검증하기 위해 표 2과 같이 실험을 설계하였다. 훈련 전에 훈련분석프로그램(이하 BQ Test)으로 뇌기능을 측정하였고, 학교급별 청소년 모두 20~25회기의 뉴로피드백 훈련을 하였다. 사후의 뇌기능을 측정한 후 전체 데이터는 SPSS 12.0로 변환하여 t-test로 통계처리 하였다.

<table>
<thead>
<tr>
<th>표 1</th>
<th>연구를 위한 실험설계</th>
<th>Table 1</th>
<th>Designed for the study</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>훈련 전 측정</td>
<td>훈련횟수</td>
<td>훈련 후 측정</td>
</tr>
<tr>
<td>실험군</td>
<td>T1 20~25회</td>
<td></td>
<td>T2</td>
</tr>
<tr>
<td>비교군</td>
<td>C1</td>
<td>C2</td>
<td></td>
</tr>
</tbody>
</table>

2.1. 연구대상 및 절차

<table>
<thead>
<tr>
<th>표 2</th>
<th>실험대상</th>
<th>Table 2</th>
<th>Experimental samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>학교급별</td>
<td>초등학교</td>
<td>중학교</td>
<td>고등학교</td>
</tr>
<tr>
<td>실험군(N=45)</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>비교군(N=45)</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>계(N=90)</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
</tbody>
</table>

2.3 연구도구

(재)한국정신신과학연구소에 개발한 뇌기능분석프로그램인 BQ-Test를 사용하였고 측정 및 훈련도구는 (주)브레인테크의 2-채널시스템 프로그램인 뉴로하모니M을 사용하였다. 뉴로하모니M은 미국 Grass Neurodata Amplifier System과 비교하였을 때 좌우 양파, 베타파, 세타파 값에 대한 상관계수가 .916(P<.001)으로 신뢰도와
타당도를 검증받은 바 있다[8].

2.4 뇌기능지수의 의미

이 연구에서는 뇌기능분석(BQ Test)의 주요지수인 8개 모두를 분석하여 각 학교급별에 나타난 연령별 차이를 분석하고자 하였다. 기초음동지수(Basic Rhythm Quotient)는 뇌의 안정성을 나타내는 지수이며 자기조절지수(Self-Regulation Quotient)는 수면, 주의력, 집중력의 세 가지 상태를 자율조절하는 능력을 평가한다. 주의지수(Attention Quo tient)는 θ파와 SMR의 비율과 연령에 따라 뇌 각성 정도를 판단한 것이다, 활성지수(Activation Quotient)는 뇌의 정신적 활동과 사고능력 및 행동성향을 판단한다. 정서지수(Emotional Quotient)는 정서적 안정, 불안정상태를, 헤스트레스지수(Stress Resistance Quotient)는 우울성, 정신적 피로도를 나타내며 높음을 줄인다. 좌우뇌균형지수(Correlation Quotient)는 좌뇌와 우뇌의 균형을 본다. 뇌지수(Brain Quotient)는 앞에서 설명한 모든 지수들을 기반으로 뇌의 기능을 종합 평가하는 지수이다[8].

3. 연구결과

3.1 실험집단의 동질성 검증

이 연구에 참여한 초중고의 학교급별 실험군 45명, 비교군 45명의 집단 간 독립표본 t-검증을 실시한 결과 표 3에서처럼 각 변수에 대한 집단 간의 차이가 P(0.05)로서 집단 간 차이에 대해 영향을 채택하였다.

[표 3] 실험집단의 동질성 검증 결과

<table>
<thead>
<tr>
<th>변수</th>
<th>실험군 M=SD</th>
<th>비교군 M=SD</th>
<th>t</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>기초음동지수 좌</td>
<td>76.74±10.35</td>
<td>76.22±9.63</td>
<td>0.246</td>
<td>0.806</td>
</tr>
<tr>
<td></td>
<td>74.80±10.16</td>
<td>76.15±8.13</td>
<td>0.790</td>
<td>0.432</td>
</tr>
<tr>
<td>기초음동지수 우</td>
<td>72.11±15.13</td>
<td>74.98±19.11</td>
<td>-0.790</td>
<td>0.432</td>
</tr>
<tr>
<td>주의지수 좌</td>
<td>46.37±16.18</td>
<td>52.62±15.08</td>
<td>-1.895</td>
<td>0.061</td>
</tr>
<tr>
<td></td>
<td>47.00±15.78</td>
<td>51.93±15.17</td>
<td>-1.511</td>
<td>0.134</td>
</tr>
<tr>
<td>주의지수 우</td>
<td>54.72±14.16</td>
<td>59.52±14.22</td>
<td>-1.601</td>
<td>0.113</td>
</tr>
<tr>
<td>활성지수 좌</td>
<td>55.32±13.05</td>
<td>59.00±14.25</td>
<td>-1.279</td>
<td>0.204</td>
</tr>
<tr>
<td></td>
<td>79.70±5.07</td>
<td>81.21±4.33</td>
<td>-1.521</td>
<td>0.132</td>
</tr>
<tr>
<td>활성지수 우</td>
<td>68.49±11.22</td>
<td>70.53±11.44</td>
<td>-0.854</td>
<td>0.395</td>
</tr>
<tr>
<td>합산 헤스트레스 좌</td>
<td>68.62±10.09</td>
<td>68.33±12.65</td>
<td>0.0114</td>
<td>0.909</td>
</tr>
<tr>
<td></td>
<td>75.06±12.92</td>
<td>77.36±9.36</td>
<td>-0.968</td>
<td>0.336</td>
</tr>
<tr>
<td>합산 헤스트레스 우</td>
<td>65.36±7.12</td>
<td>67.99±6.55</td>
<td>-1.823</td>
<td>0.072</td>
</tr>
</tbody>
</table>
*P(0.05)

3.2 초등학교 집단 간의 차이검증

[표 4] 초등학교의 집단 간 차이검증 결과

<table>
<thead>
<tr>
<th>변수</th>
<th>실험군 M=SD</th>
<th>비교군 M=SD</th>
<th>t</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>기초음동지수 좌</td>
<td>82.64±11.63</td>
<td>84.53±8.83</td>
<td>2.119</td>
<td>0.032</td>
</tr>
<tr>
<td></td>
<td>74.38±11.14</td>
<td>73.66±1.44</td>
<td>1.719</td>
<td>0.022</td>
</tr>
<tr>
<td>기초음동지수 우</td>
<td>73.51±12.34</td>
<td>73.08±11.00</td>
<td>-0.941</td>
<td>0.363</td>
</tr>
<tr>
<td>주의지수 좌</td>
<td>71.60±12.90</td>
<td>71.51±9.06</td>
<td>-2.212</td>
<td>0.044</td>
</tr>
<tr>
<td></td>
<td>70.26±17.02</td>
<td>69.29±14.22</td>
<td>-0.453</td>
<td>0.650</td>
</tr>
<tr>
<td>주의지수 우</td>
<td>52.79±10.30</td>
<td>60.54±7.95</td>
<td>-3.048</td>
<td>0.011</td>
</tr>
<tr>
<td></td>
<td>61.15±9.40</td>
<td>54.03±8.44</td>
<td>-2.722</td>
<td>0.011</td>
</tr>
<tr>
<td>활성지수 좌</td>
<td>53.31±7.25</td>
<td>62.19±8.72</td>
<td>-3.177</td>
<td>0.007</td>
</tr>
<tr>
<td></td>
<td>60.10±11.67</td>
<td>56.37±6.79</td>
<td>1.165</td>
<td>0.263</td>
</tr>
<tr>
<td>활성지수 우</td>
<td>60.78±6.47</td>
<td>66.75±7.92</td>
<td>-2.387</td>
<td>0.022</td>
</tr>
<tr>
<td></td>
<td>69.18±10.02</td>
<td>90.92±9.99</td>
<td>-3.491</td>
<td>0.000</td>
</tr>
<tr>
<td>정서지수 좌</td>
<td>81.54±3.46</td>
<td>83.53±2.85</td>
<td>-1.933</td>
<td>0.074</td>
</tr>
<tr>
<td></td>
<td>83.44±3.29</td>
<td>81.41±3.84</td>
<td>-2.026</td>
<td>0.062</td>
</tr>
<tr>
<td>정서지수 우</td>
<td>69.86±13.94</td>
<td>77.37±8.03</td>
<td>-2.149</td>
<td>0.030</td>
</tr>
<tr>
<td></td>
<td>71.50±10.15</td>
<td>74.69±8.97</td>
<td>-0.857</td>
<td>0.400</td>
</tr>
<tr>
<td>합산 헤스트레스 좌</td>
<td>70.94±7.58</td>
<td>77.52±6.84</td>
<td>-2.770</td>
<td>0.009</td>
</tr>
<tr>
<td></td>
<td>67.58±15.35</td>
<td>76.00±6.97</td>
<td>1.853</td>
<td>0.089</td>
</tr>
<tr>
<td>합산 헤스트레스 우</td>
<td>74.39±12.63</td>
<td>72.15±7.87</td>
<td>0.6174</td>
<td>0.547</td>
</tr>
<tr>
<td></td>
<td>78.63±10.17</td>
<td>76.88±11.95</td>
<td>0.523</td>
<td>0.609</td>
</tr>
<tr>
<td>뇌지수 좌</td>
<td>68.19±3.47</td>
<td>72.73±3.68</td>
<td>-3.673</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td>71.07±4.84</td>
<td>69.04±4.67</td>
<td>1.391</td>
<td>0.186</td>
</tr>
<tr>
<td>뇌지수 우</td>
<td>76.52±10.35</td>
<td>76.32±11.14</td>
<td>-0.854</td>
<td>0.395</td>
</tr>
<tr>
<td></td>
<td>68.33±14.63</td>
<td>51.33±13.65</td>
<td>0.0114</td>
<td>0.909</td>
</tr>
<tr>
<td>뇌지수 좌</td>
<td>75.06±12.92</td>
<td>77.36±9.36</td>
<td>-0.968</td>
<td>0.336</td>
</tr>
<tr>
<td>뇌지수 우</td>
<td>65.36±7.12</td>
<td>67.99±6.55</td>
<td>-1.823</td>
<td>0.072</td>
</tr>
</tbody>
</table>
*P(0.05)

표 4의 결과에서, 초등학교 실험군에서는 자기조절지수, 주의지수 좌우, 활성지수 좌우, 헤스트레스지수 좌우, 뇌지수에서 신뢰도 P(0.05)의 유의미한 결과를 보여주었다. 그러나 비교군에서는 어떠한 유의미한 변화도 발견되지 않았으며 오히려 실험기간 동안 주의지수와 활성지수가 떨어져 있는 것을 볼 수 있었다. 실험군의 경우 기초음동지수 좌우 P=0.052, 363, 정서지수 P=0.074, 좌우뇌균형 P=0.054로서 유의미한 결과가 나타나지 않았다. 그러나 자기조절지수의 경우 t값이 -2.218, P=0.044, 주의지수는 좌우 t값이 -2.907, 3.173, P=0.011, 0.007로서 유의미한 결과가 나타났으며 활성지수
수의 경우 좌우 t값이 -2.389, -2.820, $P=.032^*$, .014*로 나타나 역시 유의미한 결과를 보이 주었다. 항스트레스지수의 경우 좌우 t값이 -2.143, -2.272, $P=.050^*$, .039*로 유의한 결과가 나타났으며 중합지수의 경우 t값이 -3.632, $P=.003^*$로 나타나 유의미한 결과를 보이 주었다.

3.3 중학교 집단 간의 차이검증

표 5의 결과에서 나타난 바와 같이, 중학교 뉴로피드 백 실험군에서는 자기조절지수, 주의지수 좌우, 활성지수 좌우, 정서지수, 항스트레스지수 좌우, 뇌지수에서 신뢰도 $P(\leq .05)$의 유의미한 결과를 보여주었다. 그러나 비교군에서는 유의미한 변화가 발견되지 않았다.

3.4 고등학교 집단 간의 차이검증

표 6의 결과에 나타난 바와 같이, 고등학교 뉴로피드 백 실험군에서는 주의지수 좌우, 활성지수 좌우, 정서지수, 뇌지수에서 신뢰도 $P(\leq .05)$의 유의미한 결과를 보여주었다. 그러나 비교군에서는 어떠한 유의미한 변화도 나타나지 않았다.

고등학교 실험군의 경우 기초활동수 좌우 $P=.969$, .701, 자기조절지수 $P=.666$, 활성지수 우 $P=.190$, 항스트레스지수 좌우 $P=.069^*$, .053*, 좌우비교군 $P=.476$으로서 유의미한 결과가 나타나지 않았다. 그러나 주의지수의 경우 좌우 t값이 -3.150, -3.042, $P=.007^*$, .009*로서 명확하게 유의미한 결과가 나타났으며 활성지수의 경우 좌우에서 만 t값이 -2.483, $P=.026$으로서 나타나 유의미한 결과를 보이 주었다. 정서지수의 경우 t값이 -2.393, $P=.031^*$, 종합지수인 뇌지수는 t값이 -4.152, $P=.001^*$로서 유의미한 결과를 보이 주었다.

<table>
<thead>
<tr>
<th>변수</th>
<th>실험군</th>
<th>비교군</th>
</tr>
</thead>
<tbody>
<tr>
<td>훈련 전</td>
<td>훈련 후</td>
<td>t</td>
</tr>
<tr>
<td>기초 활동</td>
<td>72.75±1</td>
<td>72.88±1</td>
</tr>
<tr>
<td>주의지수</td>
<td>7.32±1</td>
<td>7.32±1</td>
</tr>
<tr>
<td>자기조절</td>
<td>70.52±1</td>
<td>70.37±1</td>
</tr>
<tr>
<td>정서지수</td>
<td>81.88±1</td>
<td>81.97±1</td>
</tr>
<tr>
<td>활성지수</td>
<td>69.56±1</td>
<td>70.12±1</td>
</tr>
<tr>
<td>자가조절</td>
<td>78.72±1</td>
<td>77.34±1</td>
</tr>
<tr>
<td>화성지수</td>
<td>83.97±1</td>
<td>83.64±1</td>
</tr>
<tr>
<td>정서지수</td>
<td>76.93±1</td>
<td>76.77±1</td>
</tr>
</tbody>
</table>

*$P(\leq .05)$

<table>
<thead>
<tr>
<th>변수</th>
<th>실험군</th>
<th>비교군</th>
</tr>
</thead>
<tbody>
<tr>
<td>훈련 전</td>
<td>훈련 후</td>
<td>t</td>
</tr>
<tr>
<td>기초 활동</td>
<td>72.75±1</td>
<td>72.88±1</td>
</tr>
<tr>
<td>주의지수</td>
<td>7.32±1</td>
<td>7.32±1</td>
</tr>
<tr>
<td>자기조절</td>
<td>70.52±1</td>
<td>70.37±1</td>
</tr>
<tr>
<td>정서지수</td>
<td>81.88±1</td>
<td>81.97±1</td>
</tr>
<tr>
<td>활성지수</td>
<td>69.56±1</td>
<td>70.12±1</td>
</tr>
<tr>
<td>자가조절</td>
<td>78.72±1</td>
<td>77.34±1</td>
</tr>
<tr>
<td>정서지수</td>
<td>76.93±1</td>
<td>76.77±1</td>
</tr>
</tbody>
</table>

*$P(\leq .05)$
4. 결론

뉴로피드백 훈련이 연령에 따라 어떤 효과를 보여주고 있는지 이 연구의 결과를 종합하면 표 7과 같다. 변수로 보았던 8개의 지수 가운데 초등학교의 경우에는 자기조절지수, 주의지수, 활성지수, 합스스트레스지수, 뇌지수의 총 5개에서 유의미한 효과가 나타났다. 중학교는 자기조절지수, 주의지수, 활성지수, 정서지수, 합스스트레스지수, 뇌지수의 6개에서 의미있는 효과를 보여주었다. 고등학교에서는 주의지수, 활성지수 좌, 정서지수, 뇌지수의 4개에서 효과를 보여주었다. 이러한 결과를 바탕으로 연령에 따른 뉴로피드백의 효과를 다음과 같이 논의할 수 있다.

또한 중학교급, 고등학교급에서는 정서지수에서의 효과가 확인되었는데 이는 Cabeza(2002)의 연구에서 나이가 들어갈수록 우수한 두뇌 수행력을 보이는 집단의 전두엽 대뇌피질 활동이 대칭적으로 나타나서는 보고를 간접적으로 확인할 수 있었다. 연령이 높은 학교급별 집단에서 대뇌피질의 활동이 높아지면서 나타나는 뇌발달이 정서지수의 항상에 반영된 것으로 생각해 볼 수 있게 되었다. 그러나 좌우뇌균형지수와 같은 대칭성까지 유의미한 결과를 이어지는 못했다. 그것은 청소년기의 좌우뇌 비대칭의 경우 발달과정에 있는 이 시기 아이들의 특징처럼 나타나는 경향이 있기 때문이었다.

둘째, 뉴로피드백 훈련이 청소년기의 뇌발달을 지 원하는 데 뚜렷한 효과가 있다는 것을 알 수 있었다. 이 연구에서 뇌기능변화를 위해 사용한 8개의 영역별 지수 가운데 6개의 회복이 보이면서 다른 변화를 보이지 않았으며 어떤 경우에는 뇌기능이 오히려 떨어지지 않은 뉴로피드백 훈련이 청소년기 뇌기능의 항상성을 보여주는 것이었다. 특히, 이 연구에서 나타난 주의지수, 활성지수, 합스스트레스지수의 항상은 이 시기의 학습과 관련하여 시사하는 바가 매우 크다. 주의지수의 항상은 학습을 방해하는 세타파의 감소를 유도하고 청소년기 학습능력 및 효과를

<table>
<thead>
<tr>
<th>변수</th>
<th>초등학교</th>
<th>중학교</th>
<th>고등학교</th>
</tr>
</thead>
<tbody>
<tr>
<td>기 초</td>
<td>2.119</td>
<td>0.052</td>
<td>1.196</td>
</tr>
<tr>
<td>지수</td>
<td>-0.940</td>
<td>0.363</td>
<td>-0.416</td>
</tr>
<tr>
<td>주기</td>
<td>2.389</td>
<td>0.032</td>
<td>3.042</td>
</tr>
<tr>
<td>성 기</td>
<td>-2.820</td>
<td>0.014</td>
<td>-2.124</td>
</tr>
<tr>
<td>정 시</td>
<td>-1.930</td>
<td>0.074</td>
<td>-2.356</td>
</tr>
<tr>
<td>지수</td>
<td>-2.143</td>
<td>0.050</td>
<td>-2.780</td>
</tr>
<tr>
<td>합 스 트 레 스 지 수</td>
<td>-2.271</td>
<td>0.039</td>
<td>-2.343</td>
</tr>
<tr>
<td>좌우</td>
<td>0.617</td>
<td>0.547</td>
<td>0.333</td>
</tr>
<tr>
<td>균 형</td>
<td>-3.632</td>
<td>0.003</td>
<td>-4.152</td>
</tr>
</tbody>
</table>

*P(≤.05)
높이는 데 기여하는 측도이다. 활성지수의 향상은 알파파와 저베타파의 활성을 유도해 주며 정보처리능력과 효율을 높이는 데 도움을 준다. 텅스터레스지수의 향상은 델타파 및 고베타파와 같은 높은 진폭의 뇌파를 조절하여 두뇌의 에너지 효율을 높여주고 스트레스의 저항력을 향상시키며 일상에서의 생활태도를 주도적으로 개선해 줄 수 있다. 실험군에 나타난 이러한 지수들의 향상은 청소년기에 건강과 학습을 지원하는 중요한 도구로서 평가받기에 의미가 있을 것으로 보인다.

연구결과를 통해 뉴로피드백 시스템을 통한 두뇌훈련이 청소년기에 건강한 뇌, 효율적인 학습을 지원할 수 있는 의미있는 교육방법이 될 수 있다고 하겠다. 몇몇에서 제공한 20-25회의 시간적 규칙성이 뇌발달을 가능하게 했으리라는 의견에 대해서는 향후 연구의 과제로 삼고자 한다.

References

