Effect of maternal gene expression on porcine oocytes in vitro maturation

Jae-Dal Lee1*
1Department of Pet Care, Hyejeon College

Abstract
Understanding of the maternal transcriptome increased to elucidate the underlying molecular mechanism of normal oocyte maturation, which depends on a precise sequence of changes in maternal genes expression. Previous reports that the translational potential of a maternal mRNA is generally determined by the length of the poly(A) tail, and deadenylation is usually the first sign of mRNA degradation. However, in vitro cultured system has the underlying molecular mechanisms remain unclear. We determined whether the role of molecular basis, four important maternal genes, C-mos, cyclin-B1 (regulatory subunit of MPF), BMP15 and GDF9, were selected for detection of their precise mRNA expression patterns by real-time PCR and for determination of their polyadenylation status by poly(A) tail PCR during oocyte maturation. In the present study, the abnormal expression of maternal mRNAs prior to zygotic genome activation, which results in suppression of the corresponding protein level, may be responsible for, at least in part, a profound defect in further embryonic development. Reasonable expression of maternal gene is crucial for proper oocyte maturation and further embryonic development.

Key Words : Porcine oocytes, Maternal gene, Polyadenylation, In vitro maturation

1. Introduction
During meiotic maturation, mammalian oocytes accumulate a larger than necessary pool of maternally derived transcripts for oocyte maturation and early embryogenesis. An increased understanding of the maternal transcriptome is needed to elucidate the underlying molecular mechanism of normal oocyte maturation, which depends on a precise sequence of changes in maternal genes expression. The translational potential of a maternal mRNA is generally determined by the length of the poly(A) tail, and deadenylation is usually

*Corresponding Author : Jae-Dal Lee
Tel: +82-11-484-2284 email: jdleehj.ac.kr
Received May 30, 2012 Revised June 21, 2012 Accepted August 9, 2012
the first sign of mRNA degradation [1]. The in vivo overexpression of poly(A) polymerase (PAP), which further intensified the level of cellular polyadenylation, resulted in embryonic lethality in Drosophila [2].

To date, few maternal oocyte genes in human or mouse oocytes have been characterized. Among these maternal transcripts, C-mos, cyclin-B1, growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15, also known as GDF9B) are well-studied genes considered to be markers of female germ cells. C-mos is a proto-oncogene identified as a regulator of oocyte maturation in human [3], mouse [4] and pig [5]. Mos is an active component of the cytosolic factor (CSF) responsible for the arrest of meiosis at MII stage [6]. As a mitogen activated protein (MAP) kinase kinase kinase, Mos activates extracellular signal-regulated protein kinase (ERK) 1 and 2. A functional study suggested that Mos also mediates the activity of maturation/M phase promoting factor (MPF), another essential regulator of meiosis resumption formed by cyclin B1 and Cdc2 kinase, through the MAPK pathway and stabilization of cyclin B1 [6]. It has been reported that the dynamic change in levels of cyclin B1 is mainly controlled by cytoplasmic polyadenylation during mouse [7] and bovine [8] oocyte maturation. However, no such study has yet been conducted in pig oocytes. GDF9 and BMP15 belong to the transforming growth factor-b (TGF-b) superfamily, which contains many members with important roles in regulating fertility [9]. GDF9 and BMP15 were currently identified as oocyte-secreted factors involved in folliculogenesis and oocyte maturation, as well as in cooperative regulation of granulose cells [10].

In the present study, cordycepin (3'-dA), a potent polyadenylation inhibitor or cyclopiazonic acid (CPA), a specific inhibitor of Ca2+-ATPase were used to detect the overall effects of polyadenylation or Ca2+-ATPase inhibition on in vitro porcine oocyte meiotic maturation. To further reveal the underlying molecular basis, four important maternal genes, C-mos, cyclin-B1 (regulatory subunit of MPF), BMP15 and GDF9, were selected for detection of their precise mRNA expression patterns by real-time PCR and for determination of their polyadenylation status by poly(A) tail PCR during oocyte maturation.

2. Materials and Methods

Ovaries were collected from prepubertal gilts at a local slaughterhouse and transported to the laboratory in 0.9% NaCl solution supplemented with 75mg/ml penicillin G and 50mg/ml streptomycin sulfate at 35°C. Cumulus-oocyte complexes (COCs) were aspirated from antral follicles. Approximately 60 COCs were matured in 500 ml tissue culture medium (TCM)-199 containing 0.1% PVA (w/v), 3.05mM D-glucose, 0.91mM sodium pyruvate, 0.57mM cysteine, 10 ng/ml epidermal growth factor (EGF, Sigma, St. Louis, MO, USA), 10 IU/ml PMSG, 10 IU/ml hCG, 75 mg/ml penicillin G, and 50 mg/ml streptomycin sulfate, under mineral oil at 38.5°C for 44 hr in a humidified atmosphere of 5% CO2 in air. In the drug treatment groups, 3'-dG(2mg/ml) or 3'-dA (5, 2, and 1 mg/ml) were added in the culture medium. In another experiment, 10 uM CPA was added to the culture medium.

2.1 Real-time PCR with SYBR green

mRNAs from porcine oocytes derived by in vitro maturation were isolated with Dynabeads mRNA Direct Kit (Dynal Asa, Oslo, Norway), according to the manufacturer's instruction. The firststrand cDNA synthesis was achieved by reverse transcription of mRNA using the Oligo(dT)12-18 primer and SuperScript TM II Reverse Transcriptase (Invitrogen Co., Grand Island, NY). Real time PCR using a DNA Engine OPTICOJ 2 (MJ Research, Waltham, MA, USA) instrument was performed in a final reaction volume of 20 ml with SYBR Green. The relative quantification of gene expression was analyzed using the 2-ddCt method by normalization to internal porcine b-actin mRNA expression.

2.2 PAT Assay: analysis of poly(A) tail lengths by PCR

For determination of maternal transcript poly(A) tail length, the PCR-based poly(A) tail (PAT) assay was carried out according to the method of Salles and Strickland with some minor modifications. Poly A+ RNAs from pools of 25 denuded pig oocytes sampled at different time points (0, 18, 28, 44 hr) during IVM were isolated by Dynabeads mRNA Direct Kit (Dynal Asa, Oslo, Norway). The first-strand cDNA was synthesized by
reverse transcription of isolated mRNAs with Oligo(dT)-Anchor as the primer (5’-GCGAGCTCCGGC-GCGT12-30).

Subsequent PCR was performed using Oligo(dT)-Anchor and gene-specific upstream primers for the test maternal transcripts. The PCR reactions were performed in 20 ml reactions containing 1X PCR buffer, 1 ml of each primer, 75 mM of each dNTP, 2.0 mM MgCl2, 0.5 U TaqDNA polymerase (Promega, Madison, WI) and 4 ml of cDNA (equal to 1 oocyte). The amplification protocol was initiated with 5 min at 93°C, followed by 33 cycles of 30 sec at 93°C, 1 min at 60°C, and 50 sec at 72°C, and was completed by a final extension of 5 min at 72°C. PCR products were electrophoresed on 2.0% Agarose gel stained with 0.5 mg/ml ethidium bromide.

2.3 Data analysis

At least three replicates were performed for each treatment. Statistical analyses were conducted using an analysis of variance (ANOVA) and differences between treatment groups were evaluated with Duncan’s multiple comparison test. Data were expressed as mean ± SEM and p<0.05 was considered to be statistically significant.

3. Results and Discussion

3.1 Maternal gene expression in porcine oocytes

Expression patterns of C-mos, cyclin-B1 (regulatory subunit of MPF), BMP15 and GDF9 were analyzed during pig oocyte maturation by the sensitive real-time PCR method. These four genes represented three different expression patterns. C-mos and BMP15 were maintained at relatively high levels throughout oocyte maturation, with a specific higher expression at 28 hr. Cyclin-B1 expression was relatively low during early stages of IVM, and then significantly increased up to 44 hr. Transcription of GDF9 remained constant at remarkably high levels during 0–28 hr of oocyte maturation, but was dramatically decreased at 44 hr.

3.2 mRNA levels of Cyclin B1 isoforms and Cdc2 in porcine oocytes

The mRNA expression patterns of both cyclin B1 isoforms and cyclin B1-L alone were similar, showing an initial, relatively consistent, low level during the early stages of IVM followed by a significant increase at 30 and 44 hr. Expression of Cdc2 was stable during 0–30 hr of maturation, and then sharply decreased at 44 hr.

3.3 Effect of cordycepin (3′-dA) on maternal gene expression

Cordycepin (3′-dA), a potent polyadenylation inhibitor, was used to detect the overall effects of polyadenylation inhibition on in vitro porcine oocyte meiotic maturation. In 1 mg/ml 3′-dA-treated oocytes, C-mos and cyclin-B1 mRNA levels were unchanged during oocyte maturation. As demonstrated by comparative analysis, the expression of cyclin-B1 and BMP15 by pig oocytes was unchanged, while C-mos and GDF9 expression patterns during maturation were different between the untreated group and the 3-dA treated group (Fig. 1). In 3′-dA-treated...
Effect of maternal gene expression on porcine oocytes in vitro maturation

3.4 Effect of cyclopiazonic acid (CPA) on maternal gene expression

Cyclopiazonic acid (CPA) is a specific inhibitor of Ca2+-ATPase, and thereby facilitates the release of Ca2+ from intracellular stores. CPA consequently elevates intracellular calcium levels through mobilization of intracellular deposits and through the influx of extracellular Ca2+ (store-operated Ca2+ entry; Demaurex et al., 1992). To investigate the mechanism responsible for the inhibitory effect of CPA on oocyte maturation at the molecular level, the mRNA expression patterns and polyadenylation status of important maternal genes were investigated by PCR analysis. In mature oocytes treated with CPA, the maternal genes C-mos, BMP15, GDF9, and cyclin B1 showed significantly increased expression levels compared with the control groups. The expression level of calreticulin showed no change (Fig. 2).

3.5 Polyadenylation status of maternal mRNAs in porcine oocytes

This experiment was designed to assess the poly(A) tail length of important maternal genes (C-mos, GDF9, BMP15) and mRNAs encoding proteins for MAPK (p42 and p44) and MPF (cyclin-B1 and Cdc2), and to detect the effect of a polyadenylation inhibitor on their polyadenylation status during pig in vitro oocyte maturation. Addition of 3’-dG in culture medium did not influence the oocyte maturation rate (Table 1) or the maternal mRNAs polyadenylation process. In polyadenylation inhibitor-treated (2 or 1 mg/ml) oocytes, all the genes displayed a polyadenylation pattern similar to that observed in germinal vesicle (GV) oocytes (0 hr), regardless of whether polyadenylation or deadenylation occurred during IVM. C-mos and cyclin-B1 were shown to undergo polyadenylation during oocyte maturation. Particularly, C-mos was intensively polyadenylated at 44 hr after IVM, while the polyadenylation of cyclin-B1 started at 28 hr (Fig. 3).

3535

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Effect of polyadenylation inhibition on porcine oocyte maturation in vitro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment (44 hr)</td>
<td>N (COCs)</td>
</tr>
<tr>
<td>Normal IVM</td>
<td>100</td>
</tr>
<tr>
<td>3’-dG 2 µg/ml</td>
<td>76</td>
</tr>
<tr>
<td>3’-dA 5 µg/ml</td>
<td>60</td>
</tr>
<tr>
<td>3’-dA 2 µg/ml</td>
<td>129</td>
</tr>
<tr>
<td>3’-dA 1 µg/ml</td>
<td>71</td>
</tr>
</tbody>
</table>

[Fig. 2] The effect of cyclopiazonic acid (CPA) on the expression of maternal genes. Pig MII-stage oocytes maturated with or without 10 mM of CPA were analyzed by real-time RT-PCR. The expression level of mRNAs in the control oocytes was taken as one-fold, and all expression levels were normalized to internal b-actin levels. Statistically significant differences are indicated by *P<0.05 and **P<0.01.

[Fig. 3] Dynamic changes in poly(A) tail length of selected maternal transcripts during pig oocyte in vitro maturation (IVM) by the PCR-based poly(A) tail (PAT) assay.
4. Conclusion

Previous reports have focused on maternal gene expression and polyadenylation in porcine oocyte maturing in vitro. Little information is available about maternal gene function and polyadenylation/deadenylation status during porcine oocyte meiotic maturation. Studies showed that abnormal expression of maternal mRNAs prior to zygotic genome activation, which results in suppression of the corresponding protein level, may be responsible for, at least in part, a profound defect in further embryonic development. Reasonable expression of maternal gene is crucial for proper oocyte maturation and further embryonic development.

References

Jae-Dal Lee

- Feb. 1977 : ChungNam National Univ., Dept. of Textile Engineering
- Feb. 1990 : ChungNam National Univ., Dept. of Textile Engineering, MS
- Feb. 1999 : ChungNam National Univ., Dept. of Textile Engineering, PhD
- Aug. 2007 : ChungBuk National Univ., Dept. of Animal Science Graduate, MS
- Mar. 1995 ~ current : Hyejeon College, Dept. of Pet Care, Professor

<Research Interests>
Animal Reproductive Physiology