Realistic 3D model generation of a real product based on 2D-3D registration

Gang Yeon Kim1* and Seong Min Son1
1Faculty of Mechanical Engineering, Ulsan College

Abstract As on-line purchases is activated, customers’ demand increases for the realistic and accurate digital information of a product design. In this paper, we propose a practical method that can generate a realistic 3D model of a real product using a 3D scanner and its photographic images. In order to register images to the 3D geometry, the camera focal length, the CCD scanning aspect ratio and the transformation matrix between the camera coordinate and the 3D object coordinate must be determined. To perform this 2D-3D registration with consideration of computational complexity, a three-step method is applied, which consists of camera calibration, determination of a temporary optimum translation vector (TOTV) and nonlinear optimization for three rotational angles. A case study for a metallic coated industrial part, of which the colour appearance is hardly obtained by a 3D colour scanner has performed to demonstrate the effectiveness of the proposed method.

Key Words : 2D-3D registration, 3D colour scanner, realistic 3D model, texture parameterization

1. Introduction

As the E-business such as on-line marketing and on-line purchases is activated, there is an increased demand for the appearance (colour and texture) information of a product as well as its geometry. Since color appearance of a product plays a crucial role in its commercial success [1]. Several expansive 3D colour scanners are available for acquiring such appearance data and geometrical data of a real object at the same time. But there are many limitations of measurable materials for the 3D colour scanners. For these reasons, many 2D-3D registration techniques have been suggested to add 2D appearance data such as photographic images to a 3D
object of known geometrical data.

One simple way is selecting a set of points in each image of which corresponding points on the surface are known to solve the 2D-3D relationship[2-3]. From these pairs of points, the relationship between the image view and the 3D object often called camera transformation can be directly determined using standard camera calibration method [4-5]. However, the object should have geometric feature points which can be easily located in the image to find these pairs of points.

Another approach is trying to find the exact camera transformation automatically, using feature points or contours that easily give correspondence between image and geometry (See, Fig 1). But, this kind of algorithm generally requires huge computation to solve high non-linear optimization problem of which unknown parameters are camera focal length, CCD aspect ratio, and position and orientation of the camera [6-10].

In this paper, we present a practical method of 2D-3D registration that can generate a texture mapped 3D model of a real object. To reduce non-linearity and complexity of 2D-3D registration, a practical approach that separately solves intrinsic parameters and extrinsic parameters of the camera is applied.

2. Camera Transformation

In order to connect 3D geometry and 2D image information, it is required to know the mapping relationship between a given point on the surface and its projected image point in the photographic view. For this work, CCD scanning aspect ratio, the camera focal length and the transformation matrix between the image coordinate and the 3D object coordinate must be determined.

As shown in Fig. 2, in our work a simplified Tsai’s camera model is assumed to formulate image-to-object transformation [4].

The mapping relationship between the world coordinate system \((X_w, Y_w, Z_w)\) and the camera 3D coordinate system \((x, y, z)\) can be formulated by rigid body transformation.

\[
\begin{bmatrix}
 x \\
 y \\
 z
\end{bmatrix} = R \begin{bmatrix}
 X_w \\
 Y_w \\
 Z_w
\end{bmatrix} + T
\]

Where, \(R\) is a 3x3 rotation matrix, which is determined by using the three rotation angle \((\theta_x, \theta_y, \theta_z)\) and \(T\) is a translation vector \(\in \mathbb{R}^3\).

The perspective projected point \((u_{ccd}, v_{ccd})\) from a point \((x, y, z)\) on the surface to camera CCD plane \((z=f)\) in the camera coordinate system is given by

\[
\begin{bmatrix}
 u_{ccd} \\
 v_{ccd}
\end{bmatrix} = f \begin{bmatrix}
 x \\
 y \\
 z
\end{bmatrix}
\]

Where, \(f\) is camera focal length.

Finally, camera CCD coordinate \((u_{ccd}, v_{ccd})\) to computer image coordinate \((u, v)\) transformation is given by
Realistic 3D model generation of a real product based on 2D-3D registration

\[u = s \cdot d_x^{-1} \cdot u_{cod} + C_x \]
\[v = d_y^{-1} \cdot v_{cod} + C_y \]
\[d_x' = d_x \cdot N_{cx}/N_{fx} \]
\[d_y' = d_y \cdot N_{cy}/N_{fy} \]

(3)

Where,
- \(s \) is the CCD scanning aspect ratio.
- \(d_x, d_y \) are the size of one CCD cell in x and y direction respectively.
- \(N_{cx}, N_{cy} \) are the number of CCD cells in x and y direction respectively.
- \(N_{fx}, N_{fy} \) are the number of pixels in u and v direction as sampled by the computer respectively.
- \((C_x, C_y)\) are the image coordinate for the origin in the image plane.

3. 3D–2D registration

To perform the 3D-2D registration process robustly, in our work a three step method is applied, which consists of camera calibration for the intrinsic parameters, determination of a temporary optimum translation vector for a certain rotational matrix and nonlinear optimization for the rotational matrix. From (1), (2) and (3), the 3D-2D registration is mathematically described as the optimization of the eight parameters, which are camera focal length \(f \), CCD scanning aspect ratio \(s \), three rotation angles \(\theta_x, \theta_y, \theta_z \) and translation vector \(T \). In the case of camera intrinsic parameters which are focal length \(f \) and aspect ratio \(s \), photographic images of various objects can be easily taken with a fixed value of \(f \) and \(s \). So, we can get rid of two complexities by determining internal parameters \(f \) and \(s \) and the other parameters separately.

3.1 Camera calibration

In our work, the method of Tsai’s camera calibration with a calibration pattern is applied to determine internal parameters \(f \) and \(s \) [4]. Figure 3 shows the geometry of our calibration pattern which the matched feature-point sets of \((X_w, Y_w, Z_w)\) and \((u, v)\) are easily obtained.

[Fig. 3] geometry of camera calibration pattern

At least four feature-point sets are required to solve this camera calibration problem. The singular value decomposition (SVD) for the over-determined case (more than four feature-point sets) is employed [11].

3.2 Nonlinear optimization

To optimize \(R \) and \(T \) parameters, comparison between the silhouette of the photographic image and the silhouette of a virtually generated image is performed. The virtual image depends on the \(R \) and \(T \) parameters. In our work, a segmentation technique of the histogram-based threshold is used to obtain the silhouette of the photographic image [2]. This silhouette comparison can be represented as the cost function \(J \), which is shown below:

\[\text{Minimize } J = \sum_i \sum_j e_{i,j} \]

(4)

where, \(e_{i,j} = XOR(I_{i,j}, I'_{i,j}) \)

Where, \((i, j)\) is a spatial index over pixels in an image. \(XOR \) is the ‘exclusive or’ operation. \(I \) and \(I' \) denote the binary silhouette image of photographic and virtually generated one respectively.

This optimization problem could be directly solved by numerical method with the approach of the six independent variables \((R \) and \(T \)) system but practically it requires too huge computation and often it gives divergent solution. To reduce the complexity and the risk of a local minimum, the temporary optimum translation vector (TOTV) for a certain rotation matrix \(R \) is defined. This TOTV can be obtained by the two constraints given by
Rule 1)
The silhouette center positions of \(I \) and \(I' \) must be unified.

Rule 2)
The silhouette bounding box size of \(I \) and \(I' \) must be equal.

From the rules of 1) and 2), TOTV for a certain rotational matrix \(R \) can be expressed as below

\[
\text{TOTV} = \overline{QP} + \overline{CG} \tag{5}
\]

\[
P = O + t \cdot \frac{\vec{d}}{d}
\]

\[
t = \frac{|OP|}{|d|} = \frac{b}{a}
\]

where, \(O \) is the origin of camera coordinate, \(d \) is the vector from \(O \) to The silhouette center positions of \(I \) in the CCD Plane. \(Q \) is the silhouette center position of \(I' \). The virtual silhouette image of geometric data is obtained by projecting geometric data to the \(x-y \) plane of camera coordinate. \(C \) and \(G \) is the center position of 3D geometry and \(G \) is the projected position of \(C \) to the \(x-y \) plane of camera coordinate. \(a \) and \(b \) represent the silhouette bounding box size of \(I \) and \(I' \) respectively.

So, the mathematical model of 3D-2D registration changes \(J(f, s, R, T) \) to \(J(R) \) or \(J(\theta_x, \theta_y, \theta_z) \). The well known Levenberg-Marquardt algorithm of a nonlinear optimization method is employed to determine the optimum value of \((\theta_x, \theta_y, \theta_z) \) that matches the geometry data to its photograph with the lowest error[11].

4. Implementation and Result

![Fig. 5] 3D geometry acquisition

(a) Our 3D scanning system (b) 3D mesh model of a MP3 player composed of 56,037 vertexes and 10,1944 triangles.

A MP3 player made of shining materials is chosen for a demonstration of the proposed method. 3D points data of the MP3 player is obtained using the 3D scanner of Optoscan HE-100 developed by Breuckman Inc. Generation of its 3D mesh model from the points cloud data is performed using the Rapidform2004 of a reverse engineering CAD software developed by INUS Technology Inc. In our work OBJ file format which is developed by Wavefront Inc. is chosen to handle a 3D mesh. Figure 5 shows our 3D data acquisition equipment and a captured image of the mesh model composed of 56,037 vertexes and 10,1944 triangles.

A Cannon Mark II digital camera that produces high resolution image (3504 x 2336 pixels) is used to take photometric images of a product. Figure 6 shows a part of the photometric image of the MP3 player with the resolution of 720 x 1200 pixels and its segmented image.

Figure 7 shows our calibration pattern for estimating the camera focal length. Figure 7 (a) is a real photographical image and Figure 7 (b) is the reconstructed image using the camera inner parameters estimated from Figure 7 (a). Figure 7(c) is the superposed image by overlapping Fig. 7(a) and Fig 7(b).
Figure 8 presents the optimization progress of the 3D-2D registration. To speed up the optimization and even to increase robustness, a reliable initial solution \((\theta_x^0, \theta_y^0, \theta_z^0)\) is determined by user interaction with the mouse.

![Optimization procedure](image)

[Fig. 6] Photographs of the MP3 player: original image (left) and segmented image (right)

![Camera calibration pattern](image)

[Fig. 7] Our camera calibration pattern
(a) Real photograph (b) Reconstructed image from the estimated camera parameters (C)
Overlapped image of (a) and (b)

![Error map](image)

[Fig. 9] Error map between the real photograph and the virtually generated image for the registration result
(a) Real photograph (b) Final error map of 2D-3D registration (c) Detail view of the maximum errors

![Rendering result](image)

[Fig. 10] A rendering result of a texture mapped 3D model obtained by the proposed method

Figure 9 shows the final error map between the real photograph of a MP3 player and its virtually generated image obtained by the proposed optimizing method. Errors exist along to the contour of the object, since silhouette based matching is used in our technique. The total number of the mis-matched pixel is 6389 in Fig. (b). The size of bounding box of the mesh model in the
virtually generated image is 496 x 1023 pixels and the corresponding physical size of the bounding box is 42.3 mm x 87.3 mm. So, the average relative error defined as the number of mis-matched pixels per the number of contour pixels of bounding box is 2.103 and its corresponding physical length is 0.179 mm. And the number of pixels and corresponding physical length for the maximum error as shown in Fig. 9 (c) are 5.09 pixels and 0.436 mm, respectively.

Figure 10 shows some rendering results of the texture mapped 3D model obtained by the proposed method.

5. Conclusion

1. A practical method of 2D-3D registration is developed for generating a realistic 3D model of a real product using 3D geometry obtained by a 3D scanner and its photographic images. The 2D-3D registration is robustly performed by three step approach, which consists of camera calibration, determination of the temporary optimum translation vector and nonlinear optimization for three rotational angles.

2. The effectiveness of the our method is demonstrated by applying to a MP3 Player, of which the colour appearance data is hardly obtained by a 3D colour scanner. Test result shows that our method can be applied with acceptable level of errors for the registration.

3. Our further studies will consider multipe-view to generate a full realistic 3D model.

References

DOI: http://dx.doi.org/10.5762/KAIS.2010.11.3.821

DOI: http://dx.doi.org/10.5762/KAIS.2012.13.9.3856

DOI: http://dx.doi.org/10.1109/34.134043

DOI: http://dx.doi.org/10.1109/PCCGA.2000.883955

DOI: http://dx.doi.org/10.1111/1467-8659.00355

DOI: http://dx.doi.org/10.1007/s00371-005-0309-z

DOI: http://dx.doi.org/10.1111/j.1467-8659.2009.01552.x

Realistic 3D model generation of a real product based on 2D-3D registration

Gang Yeon Kim [Regular member]

- Aug. 2002 : Gwangju Institute of Science and Technology, Dept. of Mechatronics, MS
- Feb. 2011 : Gwangju Institute of Science and Technology, Dep. of Mechatronics, PhD
- Sep. 2011 ~ current : Ulsan College, Assist. Professor

<Research Interests>
Machine Vision, CAD/CAM, System Operating S/W Development

Seong Min Son [Regular member]

- Feb. 1999 : Pusan National Univ. MS
- Feb. 2004 : Pusan National Univ. PhD
- Nov. 2004 ~ Feb. 2007 : National Univ. of Singapore Research Fellow

<Research Interests>
Micro/Non-conventional Machining, Manufacturing