Analyzing of CDTA using a New Small Signal Equivalent Circuit and Application of LP Filters

Junho Bang¹, Je-Ho Song²*, Woo-Choun Lee¹

¹Department of IT Applied System Engineering, Smart Grid Research Center, Semiconductor Design Education Center, Chonbuk National University

Abstract A CDTA (current differencing transconductance amplifier) is an active building block for current mode analog signal processing with the advantages of high linearity and a wide frequency bandwidth. In addition, it can generate a stable voltage because all the differencing input current flows to the grounded devices. In this paper, a new small signal equivalent circuit is proposed to analyze a CDTA. The proposed small signal equivalent circuit provides greater precision in analyzing the magnitude and frequency response than its previous counterparts because it considers the parasitic components of the input, internal and output terminal. In addition, observations of the changes made in various devices, such as the resistor (Rz) confirmed that those devices heavily influence the characteristics of CDTA. The designed parameters of the proposed small signal equivalent circuit of the CDTA provides convenience and accuracy in the further design of analog integrated circuits. For verification purposes, a 2.5 MHz low pass filter was designed on the HSPICE simulation program using the proposed small signal equivalent circuit of CDTA.

Key Words: Current mode, Lowpass filter, Small signal equivalent circuit, Transconductance amplifier

1. Introduction

Current differencing transconductance amplifier (CDTA), recently reported current-mode active building block, appears to be very useful for current-mode signal processing, and its usefulness and popularity in analog integrated circuit design has been published in many papers [1], [2]. Using the CDTA
element, it is possible to obtain circuit solutions with less number of passive elements than its counterparts and it also leads to compact circuit structures requiring a few active building blocks in some applications. It has current as its input and the primary voltage can be obtained by the difference between two input currents. In here voltage is determined by the primary input node impedance and this voltage generates current through CDTA’s output with transconductance amplifier connected to the back-end. CDTA can have high linearity and wide frequency bandwidth and being relatively small size circuit it can be used to design filters and analog circuits.

A simple form of small signal equivalent circuit is used[3]–[5] for modeling and analyzing CDTA. The existing equivalent circuits haven’t considered and analyzed the parasitic component which exists in the input, internal and output terminal of CDTA. A more precise equivalent circuit is necessary which can analyze the characteristics of CDTA even considering the parasitic components.

In this paper a new small signal equivalent circuit is proposed to analyze the characteristics of CDTA. Considering the parasitic components the proposed circuit provides more precision in analyzing the magnitude and frequency response of the circuit also.

Chapter 2 shows all the input-output current and voltage characteristics of a CDTA using the proposed small signal equivalent circuit. Chapter 3 shows an application of CDTA in designing a 2.5 MHz low pass filter with HSPICE simulation results.

2. Small–signal equivalent circuit analysis of CDTA

The symbols and basic input–output voltage and current relationship of CDTA are shown in figure 1. and are differencing current input signals which gets converted into voltage through the impedance in the node Z. The converted voltage signal gets convert into currents and through transconductance.

\[
\begin{align*}
V_p &= V_n = 0 \\
I_z &= I_p - I_n \\
I^+_x &= g_m V_z \\
I^-_x &= -g_m V_z
\end{align*}
\]

[Fig. 1] (a) Symbols of CDTA, (b) Small-signal equivalent circuit of CDTA

For the detailed analysis of CDTA the small signal equivalent circuit is proposed as in the figure 2. The equivalent circuit of CDTA can be divided into current differentiator and transconductor. \(C_{i1}, R_{i1}\) and \(C_{i2}, R_{i1}\) are input impedance and \(C_{oi}, R_{oi}\) and \(C_{o2}, R_{o2}\)
are output impedance of current differentiator. And C_{x1}, R_{x1} and C_{x2}, R_{x2} are output impedance of transconductor. Here the differencing current I_z can be shown as in the equation (2),

$$I_z = d(bI_p - cI_n)$$ \hspace{1cm} (2)

Here, b and c are current gain and error value, and d is the differencing current gain of I_p and I_n respectively. The current error value of both I_p and I_n takes the value of less than 1. At node z, external impedance value is connected when differencing input current $I_z = I_p - I_n$ is converted into voltage signal and thus the voltage obtained from node z is again converted into positive output current $I'_z = g_m I_z$ and negative output current $I'_z = -g_m V_z$ through the g_m value. Here, the transconductance value “g_m” can be adjusted through external biased current. Hence the output current also gets adjusted as it depends on the g_m value. In order to design a circuit which is strong to noise characteristics generated in the fabrication process of integrated circuits, one of the important method is to construct all the devices of the passive circuit as grounded devices. Since, the z terminal of CDTA is grounded, it possess the characteristics of being strong to such noise. Using more than one grounded devices the differencing current can be converted to voltage since all the input differencing current flows to the z terminal. So small size circuits can be constructed using CDTA’s structural characteristics.

3. Design of LP filter using CDTA

In this chapter, a passive lowpass filter is designed first and then a active lowpass filter designed through converting the passive filter with CDTAs. In a passive filter, an inductor can be easily replaced with another inductor composed of CDTA making the passive filter an active filter since CDTA is an active element[6-8].

![Diagram of CDTA circuit](image)

Fig. 3 (a) The designed passive filter, (b) an active low pass filter.

Fig. 3(a) shows a second order passive filter and Fig. 3(b) shows active low pass filter made using CDTA. Here in the Fig. 3(a) L_{CDTA} represents the passive inductor which is designed using CDTA and in Fig. 3(b) it is implemented in the constructing an active low pass filter. Device values are given to the equivalent circuit in the figure 2 as shown in the table 1. Later considering these device values a second order low pass filter is designed.

<table>
<thead>
<tr>
<th>Device</th>
<th>Value before adjustment</th>
<th>Value after adjustment</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{x1}</td>
<td>2pF</td>
<td>1pF</td>
</tr>
<tr>
<td>R_{x1}</td>
<td>50Ω</td>
<td>50Ω</td>
</tr>
<tr>
<td>C_{x2}</td>
<td>4.5pF</td>
<td>1pF</td>
</tr>
<tr>
<td>R_{x2}</td>
<td>3MΩ</td>
<td>10MΩ</td>
</tr>
<tr>
<td>C_{x3}</td>
<td>2pF</td>
<td>1pF</td>
</tr>
<tr>
<td>R_{x3}</td>
<td>50Ω</td>
<td>50Ω</td>
</tr>
<tr>
<td>C_{x4}</td>
<td>4.5pF</td>
<td>1pF</td>
</tr>
<tr>
<td>R_{x4}</td>
<td>3MΩ</td>
<td>10MΩ</td>
</tr>
<tr>
<td>C_{x5}</td>
<td>3.5KΩ</td>
<td>3.5KΩ</td>
</tr>
<tr>
<td>R_{x5}</td>
<td>25pF</td>
<td>25pF</td>
</tr>
<tr>
<td>C_{x6}</td>
<td>25pF</td>
<td>25pF</td>
</tr>
</tbody>
</table>

[Table 1] Device values for the proposed small signal equivalent circuit
Here, Table 1 shows before and after adjustment value of each elements of the proposed small signal equivalent circuit in Fig. 2.

The changes in the characteristics of the low pass filter could be observed as the changes in the values of the designed parameters were made. Thus the optimal values of the devices composing the filter could be found.

<table>
<thead>
<tr>
<th>g_{m1}</th>
<th>1mS</th>
<th>1mS</th>
</tr>
</thead>
<tbody>
<tr>
<td>g_{m2}</td>
<td>1mS</td>
<td>1mS</td>
</tr>
<tr>
<td>R_z</td>
<td>800 KΩ</td>
<td>2MΩ</td>
</tr>
</tbody>
</table>

The center frequency of the active low pass filter by adjusting g_m using the device values from Table 1.

Figure 4 shows the change in the center frequency after adjusting g_m values. The results of adjusting g_m from 400μS to 1mS and Rz of 2MΩ show that the center frequency of the designed filter can be adjusted by the device value which is extracted from the proposed small signal equivalent circuits. As a result, Figure 5 shows simulated result of low pass filter of 2.5 MHz center frequency with the fixed g_m of 1mS.

3. Conclusion

In this paper, a new small signal equivalent circuit is proposed in order to analyze CDTA. The proposed circuit provides more precision in analyzing magnitude and frequency response than its previous counterparts since it considers parasitic components of the input, internal and output terminal. In addition to that, observing the changes made in various devices like resistor (R_z), it has been confirmed that those devices heavily influence the characteristics of CDTA. The designed parameters of the proposed small signal equivalent circuit of the CDTA provides convenience and accuracy in the further design of analog integrated circuits. For the verification purpose, a 2.5 MHz low pass filter is designed using HSPICE simulation program using the proposed small signal equivalent circuit of CDTA.

And by using the extracted values and equivalent circuit of CDTA as proposed in this paper henceforth it is expected to be used in designing filters and analog integrated circuits.

References

Analyzing of CDTA using a New Small Signal Equivalent Circuit and Application of LP Filters

DOI: http://dx.doi.org/10.1016/j.aeue.2006.06.002

DOI: http://dx.doi.org/10.1007/s10470-009-9291-0

DOI: http://dx.doi.org/10.1016/j.mejo.2013.12.005

Je-Ho Song [Regular member]

• Feb. 1991 : Wonkwang Univ., Department of Electronic Engineering, B. S.
• Feb. 1991 : Wonkwang Univ., Department of Electronic Engineering, M. S.
• Feb. 2003 : Wonkwang Univ., Department of Electronic Engineering, Ph. D.
• Mar. 1996 ~ Current : Department of IT Applied System Engineering, Chonbuk National University, Professor.

<Research Interests>
VLSI, Information Communication, Communication Network System, and DSP design.

Junho Bang [Regular member]

• Feb. 1989 : Chonbuk National Univ., Department of Electric Engineering, B. S.
• Feb. 1991 : Chonbuk National Univ., Department of Electric Engineering, M.S.
• Feb. 1996 : Chonbuk National Univ., Department of Electric Engineering, Ph. D.
• Mar. 1997 ~ 1998 : LG Semiconductor Institute of Technology
• Mar. 1998 ~ Current : Department of IT Applied System Engineering, Chonbuk National University, Professor.

<Research Interests>
Integrated circuit design of the analog and digital mixed mode signal processing.

Woo-Choun Lee [Regular member]

• Feb. 1977 : Dankuk Univ., Department of Electric Engineering, B. S.
• Feb. 1985 : Myongji Univ., Department of Electric Engineering, M.S.
• Feb. 1995 : Myongji Univ., Department of Electric Engineering, Ph. D.
• Mar. 1992 ~ Current : Department of IT Applied System Engineering, Chonbuk National University, Professor.

<Research Interests>
Electrical machine and Electrical control system.